PHYSICS 2204 UNIT 1: KINEMATICS WORKSHEET #1: UNITS AND MEASUREMENT

Physics is the study of motion, matter, energy, and force.

Qualitative Descriptions: are descriptions made by observing with the 5 senses, such as the

smell of a flower or the colour of someone's eyes. They include

observations which cannot be measured.

Quantitative Descriptions: are descriptions that are based on measurements or counting (i.e.

they are numerical), such as the number of petals a flower has or

how tall a person is. They deal with quantities.

Le Système International d'Unités (SI)

refers to a single measurement system (metric system) that has been agreed upon by scientist all over the world. SI has seven base units. Most other units are derived from these seven units

Base unit: refers to units that are defined.

Base quantity	Name	Symbol
	SI base unit	
length	meter	m
mass	kilogram	kg
time	second	S
electric current	ampere	A
thermodynamic temperature	kelvin	K
amount of substance	mole	mol
luminous intensity	candela	cd

Note:

meter is defined as the distance light travels in a small fraction of a second.

kilogram is the current "base unit" for mass. A kilogram is defined as the mass of a certain

lump of platinum and iridium that is kept in Paris under glass to protect it from

chemical changes that could alter its mass.

Derived units are ones that we "figure out" by using base units.

Derived quantity	Name	Symbol				
Table 2. Examples of SI derived units						
	SI derived unit					
area	square meter	m^2				
volume	cubic meter	m^3				
speed, velocity	meter per second	m/s				
acceleration	meter per second squared	m/s^2				

Accuracy refers to the closeness of measurements to is how close a measured value is to the actual (true) value.

Precision is how close the measured values are to each other.

Converting measurements is a skill that will be tested in high school math and science classes, as well as in some college classes

Method #1: The Step Stair

METHOD #2: CONVERSION FACTOR

To convert units, we need to multiply the quantity we want to convert by its conversion factor. The conversion factor basically tells us how to convert one unit into another

Example 1:

How many seconds are in seven years?

$$7a \times \frac{365day}{1a} \times \frac{24hours}{1day} \times \frac{60\min}{1hr} \times \frac{60}{1\min} = 2.2075x10^8 s$$

Example 2:

Convert 30 km/hr to m/s:

$$30\frac{km}{1hr} \times \frac{1hr}{60\,\text{min}} \times \frac{1\,\text{min}}{60\,\text{sec}} \times \frac{1000m}{1km} = 8.3m/s$$

General Rule:

To change from $km/hr = m/s \div 3.6$

To change from m/s to km/hr x 3.6

PART A: MULTIPLE CHOICE

1.	Whic	h of the following involves the study of motion, matter, energy, and force?
	(A)	Biology
	(B)	Chemistry
	(C)	Meterology
	(D)	Physics
2.	Whic	h of the following is a great physicist?
	(A)	Albert Einstein
	(B)	Galileo Galilei
	(C)	Isaac Newton
	(D)	All are correct
3.	Whic	h of the following is used to make a qualitative description?
	(A)	Your bath scales
	(B)	Your Eyes
	(C)	A measuring Tape
	(D)	A rain gauge
4.	Whic	h of the following is a quantitative description?
	(A)	The glass is half full
	(B)	It is warm in the physics lab
	(C)	The lemon tastes sour
	(D)	The mass the cat is 2.0 kg
5.		h organization is responsible for creating a system of base units to be followed by cientific community?
	(A)	International Union of Pure and Applied Chemisrty (IUPAC)
	(B)	Le Système International d'Unités (SI)
	(C)	French Academy of Sciences (FAS)
	(D)	International Space Agency (ISA)
6.	What	is the bass unit for measuring time?
	(A)	kilograms
	(B)	meter
	(C)	second
	(D)	meter/second
7.	What	is the bass unit for measuring mass?
	(A)	kilogram
	(B)	meter
	(C)	second
	(D)	meter/second
8.	Whic	h of the following is a derived unit?
	(A)	kilograms
	(B)	meter
	(C)	second
	(D)	meter/second

9. Use the picture below to describe accuracy and precision:

	Accuracy	Precision
(A)	Low	Low
(B)	Low	High
(C)	High	Low
(D)	High	High

- 10. How many seconds are there in 1.5 hours?
 - (A) 90 s
 - (B) 1500 s
 - (C) 5400 s
 - (D) 8600 s
- 11. Convert 1.56 kilograms into grams
 - (A) 1560 g
 - (B) 156 g
 - (C) 1.56 g
 - (D) 0.00156 g
- 12. What is the measurement 455 km, converted to meters?
 - (A) 0.000455 m
 - (B) 0.455 m
 - (C) 45 500 m
 - (D) 455 000 m
- 13. What is 198 km/h equal to?
 - (A) 0.0198 m/s
 - (B) 55.0 m/s
 - (C) 198 m/s
 - (D) 7128 m/s
- 14. What is 120. km/h equal to?
 - (A) 0.120 m/s
 - (B) 33.3 m/s
 - (C) 432 m/s
 - (D) $1.20 \times 10^3 \text{ m/s}$

1. Complete the chart below.

[11]

Step 1. Tell if each of the following is a quantitative or qualitative description.

Step 2. If it is a quantitative description, tell if the unit is a derived unit or a base(standard) unit.

Measurement	Quantitative/ Qualitative	Derived Unit/ Base Unit
a speed of 25 m/s		
a foul odour		
mass is 75.1 kg		
a long trip		
salty taste		
a time of 200.0 seconds		
a density of 200 g/m ³		

2.	Write the correct abbreviation for each metric unit.	
~ .	Wille the correct abore viation for each metric and.	

[9]

- A) Kilogram ____
- B) Milliliter ____
- C) Kilometer ____

- D) Meter _____
- E) Millimeter _____
- F) Centimeter ____

- G) Gram _____
- H) Liter _____
- L) Milligram _____

3. Convert the following.

[16]

- A) $2000 \text{ mg} = ___ g$
- B) $5 L = \underline{\qquad} mL$
- C) $16 \text{ cm} = \underline{\hspace{1cm}} \text{mm}$
- D) $104 \text{ km} = \underline{\hspace{1cm}} \text{m}$
- E) $198 g = ___ kg$
- F) $2500 \text{ m} = ___ \text{km}$
- G) $480 \text{ cm} = ___ \text{ m}$
- H) $75 \text{ mL} = ___ \text{ L}$
- I) $65 \text{ g} = \underline{\hspace{1cm}} \text{mg}$
- J) 5.6 kg =____g
- K) $50 \text{ cm} = ___ \text{m}$
- L) $6.3 \text{ cm} = \underline{\hspace{1cm}} \text{mm}$
- M) 8.8 mm =____ cm
- N) $5.6 \text{ m} = ___\text{cm}$
- 0) $120 \text{ mg} = ___ \text{g}$
- P) $2000 \text{ ml} = ___ L$
- 4. Convert the following
- A) $30.0s = \underline{\hspace{1cm}} min$

B) $602 \text{ min} = ___ h$

C) 4.7 h= _____ min

D) $23.6 h = ___ s$

E) $5024 \text{ s} = \underline{\hspace{1cm}} \text{min}$

- F) 6.2 h = min
- G) $25.40 \text{ min} = ___ \text{h}$
- H) $45 \text{ km/h} = \underline{\qquad} \text{ m/s}$
- I) $2.67 \text{ m/s} = ___ \text{km/h}$
- J) $100 \text{ km/h} = ___ \text{m/s}$
- K) $15 \text{ m/s} = \underline{\hspace{1cm}} \text{km/h}$
- L) $363 \text{ m/s} = ___ \text{km/h}$
- M) $25 \text{ km/h} = ____ \text{m/s}$
- N) $2.0 \text{ m/s} = ___ \text{km/h}$