Intermediate Science 7 Unit 3: Temperature and Heat Topic 2: What Kind Of Mixture

Student Name

Mixture: is a combination of two or more substances where there is no chemical combination or reaction. Mixtures combine physically in no specific proportions. They just mix

There are two types of mixtures:

1) Homogeneous mixtures :

- Is a mixture in which the components are evenly distributed among each other. You can't see the component parts.
- Homo means the same throughout.
- It has a constant composition throughout.
- Homogenous mixtures are also called SOLUTIONS
- Examples:
 - -Salt dissolved in water
 - -sugar dissolved in water
 - -apple juice
 - -tea,
 - copper (II) sulfate solution in water
 - alloys

2) Heterogeneous mixture :

- the components are not evenly distributed among each other.
- An heterogeneous mixture has two or more distinct phases that are usually detectable.
- This type of mixture does NOT have uniform properties.
- Also called MECHANICAL MIXTURES

Tyndall effect:

Sometimes you cannot tell whether something is homogeneous or heterogeneous just by looking at it.

Tyndall effect is an easy way of determining whether a mixture homogenous or heterogeneous . When light is shined through a homogenous solution, the light passes cleanly through the solution, however when light is passed through a heterogenous, the substance in the dispersed phases scatters the light in all directions, making it readily seen.

PART A: MULTIPLE CHOICE

Instructions: Shade the letter of the correct answer on the computer scorable answer sheet provided.

- 1. Which of the following is true for a mixture?
 - I) Combine physically in no specific proportions.
 - II) Can be classified as homogenous or heterogeneous
 - III) Light can be used to identify
 - IV) Can only be an element or a compound
 - (A) I and II
 - (B) I, II and III
 - (C) I, II and IV
 - (D) I, II, III and IV
- 2. Mixtures can be classified into 2 types, homogeneous and heterogenous. Why are they different?
 - (A) Heterogenous has 2 substances. Homogenous has 3 or more substances.
 - (B) Homogeneous looks the same throughout, with heterogenous you can see the different parts.
 - (C) Heterogeneous looks the same throughout, with homogeneous you can see the different parts
 - (D) They are the same, just different names
- 3. What is another name for a homogeneous mixture?
 - (A) Element
 - (B) Compound
 - (C) Mechanical mixture
 - (D) Solution
- 4. Which of the following are homogeneous mixtures?
 - (A) Oatmeal
 - (B) Rocky road ice cream
 - (C) Shampoo
 - (D) Water
- 5. What happens when you try to make a mixture of sugar and water?
 - (A) It becomes a homogeneous mixture, the sugar dissolves into the water
 - (B) It becomes a homogeneous mixture, the sugar does not dissolves into the water
 - (C) It becomes a heterogeneous mixture, the sugar dissolves into the water
 - (D) It becomes a heterogeneous mixture, the sugar does not dissolves into the water
- 6. What is another name for a heterogenous mixture?
 - (A) Element
 - (B) Compound
 - (C) Mechanical mixture
 - (D) Solution

- 7. Which of the following are mechanical mixtures?
 - (A) Chocolate bar with almonds
 - (B) Chocolate milk
 - (C) Flat pop
 - (D) Orange juice with pulp
- 8. What happens when you try to make a mixture of oil and water?
 - (A) It becomes a homogeneous mixture, the oil dissolves into the water
 - (B) It becomes a homogeneous mixture, the oil does not dissolves into the water
 - (C) It becomes a heterogeneous mixture, the oil dissolves into the water
 - (D) It becomes a heterogeneous mixture, the oil does not dissolves into the water
- 9. What can be used to tell the difference between homogenous mixture and a heterogeneous mixture?
 - (A) Flashlight
 - (B) Knife
 - (C) Spoon
 - (D) Thermometer
- 10. Which of the following refers to the process of using light to distinguish between a homogenous and heterogeneous mixture?
 - (A) Celsius effect
 - (B) Fifield effect
 - (C) Kelvin effect
 - (D) Tyndall Effect
- 11. Using the diagram below, which of the following is a heterogenous mixture?
 - (A) A only
 - (B) A and B
 - (C) A, B and C
 - (D) B and C

PART B: FILL IN THE BLANK

Classify each of the following heterogeneous mixture or homogeneous mixture ? Place the following on the scantron:

A = Homogeneous Mix	ture
B = Heterogeneous Mix	xture

12.	Plastic	
13.	Concrete	
14.	Mayonnaise	
15.	Seawater	
16.	Dirt	
17.	Soda	
18.	Italian dressing	
19.	Chicken soup	
20.	Lemonade	

PART C: FILL IN THE BLANK

Read the following information on elements, compounds and mixtures. Fill in the blanks where necessary.

- Two or more _____ or _____ NOT chemically combined.
- No reaction between substances.
- Mixtures can be uniform (called _____) and are known as solutions.
- Mixtures can also be non-uniform (called_____).
- Mixtures can be separated into their components by chemical or physical means.
- The properties of a mixture are similar to the properties of its components.

PART D: WRITTEN RESPONSE

- 1. Write a definition for the term heterogeneous mixture. Include two examples in your definition.
- 2. Write a definition for the term homogeneous mixture. Include two examples in your definition.
- 3. When you first open a bottle of pop, the liquid is filled with tiny bubbles.
 - (A) Is the pop homogeneous or heterogeneous? Explain your answer.
 - (b) If you let the pop sit for a day, what happens? Is the liquid homogeneous or heterogeneous now? Explain your reasoning.
- 4. A mechanical mixture is heterogeneous, while a solution is homogeneous. Explain why.
- 5. Describe what you will see if you shine a beam of light through a solution.