PHYSICS 2204 Unit 3: Work Power and Energy Core Lab #1: Elastic Potential Energy

STUDENT NAME:

DATE:_____

GROUP MEMBERS:

PURPOSE: In this experiment you will determine the amount of elastic potential energy stored in a spring.

BACKGROUND:

You should recall from a previous lab exercise, that the force per unit of length needed to stretch a spring is referred to as the Spring Constant and the principle of Physics that describes the behavior of springs is called Hooke's Law. If a force causes an object to move in the same direction as the force, then work is done. Work requires a change in potential energy. The "elastic potential energy" stored in a spring is related to the spring constant but is not the same thing.

PROCEDURE:

Part A: Making a Force Versus Mass Graph

1. Open a browser and go to:

https://phet.colorado.edu/sims/html/masses-and-springs/latest/masses-and-springs_en.html

This link is also found on my website: www.mrfifieldcorner.weebly.com

- 2. In the simulation click displacement, and mass equilibrium.
- 3. Set Spring Constant 1 to Small
- 4. Set damping to "lots" to prevent the spring from oscillating
- 5. Drag the ruler on the simulation to measure the elongation of the spring
- 6. Measure the length of the spring with 0 added mass. Record this length in the data table.
- 7. Hang a mass of 50 g on the spring. Calculate and record the force (weight) of the mass.
- 8. Measure and record the distance the spring is stretched (the change in length).
- 9. Repeat for 100g, 150g, 200g 250g and 300g
- 10. Complete table 1
- 11 Graph your force-elongation data. (Force should go on the vertical axis, elongation on the horizontal.)

Caution:

- 1. Converts masses from grams to kilograms
- 2. Lengths must be converted from centimeters to meters.
- 3. You must use the distance the spring is stretched (the change in length) not the entire length. Please use the ruler on the simulation to complete this

DATA/ CALCULATIONS:

Added Mass (kg)	Weight(N)	Stretch of Spring(m)
0	0	0
0.050		
0.100		
0.150		
0.200		
0.250		
0.300		

 -						-			-	

- A. Calculate the slope of the graph:
- B. What does the slope represent?
- C. What would the area under the graph represent?

Part B: Create A Elastic Potential Energy Versus Elongation Graph

Use the Force versus Elongation graph from part A to complete the table below:

Elongation (m)	Elastic Potential Energy (J)
0	0

Graph your Elastic Potential Energy Versus Elongation data. (Elastic Poential energy should go on the vertical axis, elongation on the horizontal

		[

How would you describe the shape of the graph?

Would you describe the relationship being linear or quadratic?

Conclusion: