There are at least two reasons for being familiar with scientific notation.	$\mathbf{3 6}$

1) Method of writing numbers that are very big and very small. It works like this:

$$
\begin{aligned}
& \text { a big number } \\
& \qquad \text { Speed of light }=>300,000,000 \mathrm{~m} / \mathrm{s}=3.0 \times 10^{8} \mathrm{~m} \\
& \text { a small number } \\
& \text { Charge on an electron }=>0.0000000000000000001602 \mathrm{C}=1.602 \times 10^{-19} \mathrm{C} \\
& \text { 2) helpful for indicating how many significant figures are present in a number }
\end{aligned}
$$

$$
\begin{array}{ll}
100 \mathrm{~cm} \text { as } \quad & 1.00 \times 10^{2}(3 \mathrm{sig} \mathrm{fig}) \mathrm{cm} \\
& 1.0 \times 10^{2}(2 \mathrm{sig} \mathrm{fig}) \mathrm{cm} \\
& 1 \times 10^{2}(1 \mathrm{sig} \mathrm{fig}) \mathrm{cm} .
\end{array}
$$

PART A: MULTIPLE CHOICE

1. Which of the following is equal to $3.26 \times 10^{4} \mathrm{~m}$?
(A) 0.000326 m
(B) 0.00326 m
(C) 32600 m
(D) 326000 m
2. Which of the following is equal to $7.01 \times 10^{-3} \mathrm{C}$?
(A) 0.00701 C
(B) 0.0701 C
(C) 7.01 C
(D) 701 C
3. Which of the following is not correctly expressed in scientific notation?
(A) $27.01 \times 10^{3} \mathrm{~s}$
(B) $4.2 \times 10^{9} \mathrm{~s}$
(C) $3.09 \times 10^{-2} \mathrm{~s}$
(D) $\quad 6.1 \times 10^{4} \mathrm{~s}$
4. Which of the following is the largest number ?
(A) $3.9 \times 10^{6} \mathrm{~kg}$
(B) $3.99 \times 10^{-7} \mathrm{~kg}$
(C) $3.1 \times 10^{10} \mathrm{~kg}$
(D) $4 \times 10^{6} \mathrm{~kg}$
5. Which of the following is the smallest number?
(A) 1.1×10^{6}
(B) 9.6×10^{-10}
(C) 4.2×10^{3}
(D) 4.9×10^{-6}
6. Mr. Smith construction company was contracted to build a building that ended up having a mass o 7400 kg . How would you express this in scientific notation?
(A) $7.4 \times 10^{2} \mathrm{~kg}$
(B) $74 \times 10^{2} \mathrm{~kg}$
(C) $7.4 \times 10^{3} \mathrm{~kg}$
(D) $740 \times 10 \mathrm{~kg}$
7. A satellite is measured at $205,000 \mathrm{~km}$ away from the Earth. How would you express this in scientific notation?
(A) 205×10^{3}
(B) 20.5×10^{4}
(C) 2.05×10^{5}
(D) 2.05×104
8. How would you express $6.28 \times 10^{-4} \mathrm{~m}$ in standard form?
(A) -0.000628 m
(B) -62800 m
(C) 62800 m
(D) 0.000628 m
9. How many significant digits is in $5.98 \times 10^{24} \mathrm{~kg}$?
(A) 3
(B) 4
(C) 5
(D) 6
10. How would you express $213.49^{\circ} \mathrm{C}$ in scientific notation:
(A) $2.1349 \times 10^{2}{ }^{\circ} \mathrm{C}$
(B) $0.21349 \times 1^{3}{ }^{\circ} \mathrm{C}$
(C) $2.13 \times 10^{2}{ }^{\circ} \mathrm{C}$
(D) $2.1349 \times 10^{-2}{ }^{\circ} \mathrm{C}$
11. What is the measurement 101000 grams in scientific notation?
(A) $1.01 \times 10^{5} \mathrm{~g}$
(B) $1.0100 \times 10^{-5} \mathrm{~g}$
(C) $1.01000 \times 10^{5} \mathrm{~g}$
(D) $10.1 \times 10^{4} \mathrm{~g}$
12. Solve: $123000 \mathrm{~m} \times 3234 \mathrm{~m}=$?
(A) $39800000 \mathrm{~m}^{2}$
(B) $3.98 \times 10^{8} \mathrm{~m}^{2}$
(C) $3.97 \times 10^{-7} \mathrm{~m}^{2}$
(D) $398 \mathrm{~m}^{2}$

PART B: WRITTEN RESPONSE

1. Convert each of the following into scientific notation:
a) $300000000 \mathrm{~m} / \mathrm{s}$
b) $\quad 0.00000000000000000016 \mathrm{C}$ \qquad
c) $\quad 47045 \mathrm{~mm}$ \qquad
d) $\quad 4.05 \mathrm{~m}$
e) 25 m \qquad
f) $\quad 0.0305 \mathrm{~kg}$ \qquad
g) $\quad 0.0082 \mathrm{~s}$ \qquad
h) $\quad 243 \mathrm{~N}$ \qquad
2. Write the following in standard form:
a) $\quad 2.8 \times 10^{3} \mathrm{~m} / \mathrm{s}$
b) $\quad 2.130 \times 10^{-2} \mathrm{~m}$ \qquad
c) $\quad 3.7 \times 10^{2} \mathrm{~mm}$ \qquad
d) $\quad 5.05 \times 10^{-3} \mathrm{~m}$ \qquad
e) $\quad 2.15 \times 10^{4} \mathrm{~m}$ \qquad
f) $\quad 3.34 \times 10^{0} \mathrm{~kg}$
g) $\quad 8.2 \times 10^{-3} \mathrm{~s}$ \qquad
h) $\quad 2.3310^{1} \mathrm{~s} \mathrm{~N}$ \qquad
3. Express the answer to each of the following calculations with the correct number of significant figures in scientific noation.
a) $\quad 3.0 \mathrm{~cm} \mathrm{x} 4.000 \mathrm{~cm}$
b) $\quad 0.0045 \mathrm{~mm} \times 0.90 \mathrm{~mm}$
C) $\quad 2.005 \mathrm{~cm} \times 5.0 \mathrm{~cm}$
d) $\quad 1.452 \mathrm{~m} \div 8.2 \mathrm{~s}$ \qquad
e) $\quad 0.465 \mathrm{~m} \div 0.03000 \mathrm{~s}$
f) $\quad 92.2 \mathrm{~kg} \times 293.00 \mathrm{~m} / \mathrm{s}$
g) $\quad 2.73 \mathrm{~J} \div 458 \mathrm{C}$ \qquad
h) $\quad 18.00 \mathrm{~N} \mathrm{x} 351 \mathrm{~s}$ \qquad
