
Science 1206

Unit 2: Chemical Reactions
Worksheet 11: Identifying Chemical Reactions

Chemical Reactions occur when two or more molecules interact and the molecules change. Bonds between atoms are broken and created to form new molecules.

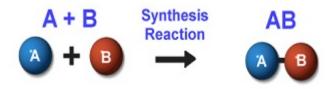
All chemical reactions have two parts:

Reactants - the substances you start with the substances you end up with

The reactants turn into the products.

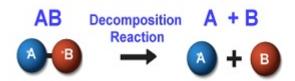
Example:

All the reactants -----> All the products


Reactant 1 + Reactant 2 ----> Product 1 + Product 2

Evidence that a chemical reaction has taken place?

- 1. Colour / Odour Change
- 2. Formation of a gas or solid
- 3. Gas Formation(effervescent)
- 4. Release/Absorption of Energy (heat)
- 5. Difficult to reverse


There are basically 5 different types of reactions, you must be able to identify the different types:

1. Synthesis Reactions: involves the joining of two atoms and/or molecules together to form a completely new compound. Synthesis reactions follow this pattern:

$$H_{2(g)} + O_{2(g)} \rightarrow H_2O_{(I)}$$

2. Decomposition reaction, a larger compound breaks apart into two smaller substances. This is essentially a reversal of what happens in a synthesis reaction.

$$KCI_{(s)} \rightarrow K_{(s)} + CI_{2(g)}$$

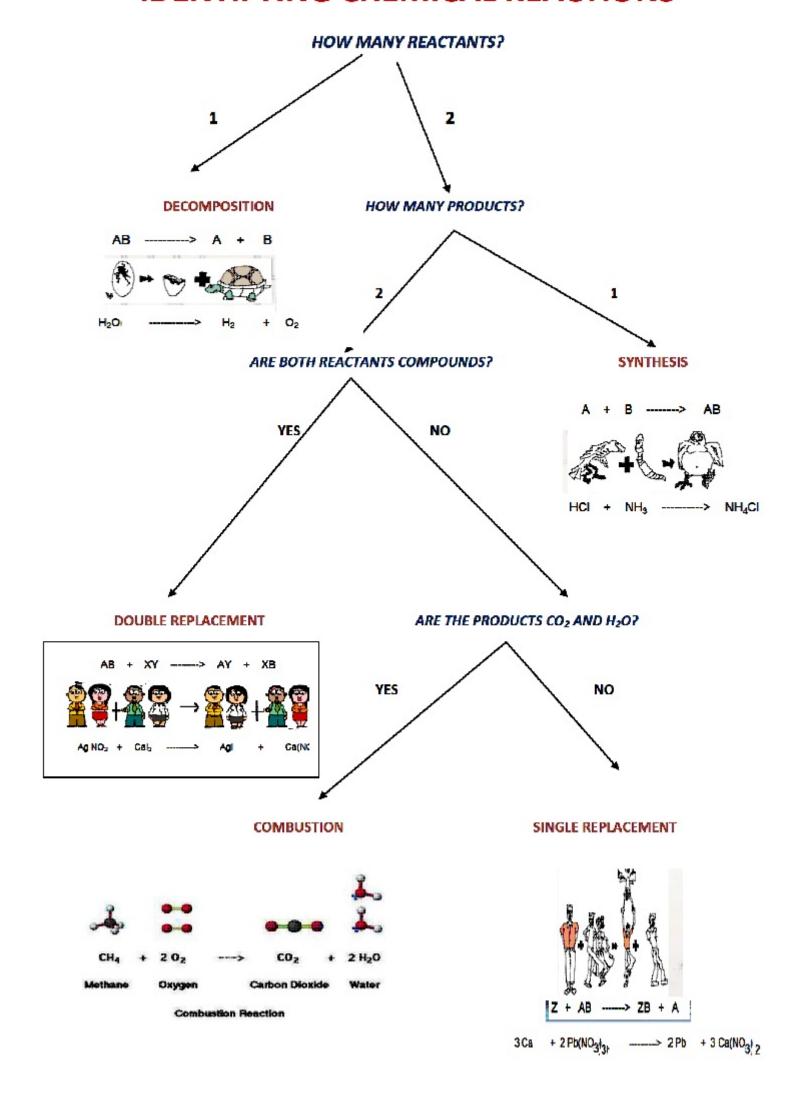
3. Single replacement reaction, the cation (usually a metal) in a compound is replaced by another, more reactive metal. Also, called single displacement reaction.

They always follow this format:

$$Li_{(s)} + Fe(NO_3)_{2(aq)} \rightarrow Fe_{(s)} + LiNO_{3(aq)}$$

4. Double replacement reaction, the cations of two compounds will switch places, forming two completely different compounds. Also, called double displacement reaction.

$$AB + CD \rightarrow CB + AD$$


$$Na_2SO_{4(aq)} + Ca(NO_3)_{2(aq)} \rightarrow CaSO_{4(s)} + NaNO_{3(aq)}$$

Usually reactants are oxygen and a hydrocarbon react to release a huge amount of energy in the form of light and heat. The products are always water and carbon dioxide (although incomplete burning does cause some by-products like carbon monoxide)

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

$$+ \longrightarrow + \longrightarrow + \bigcirc$$

IDENTIFYING CHEMICAL REACTIONS

1. For each of the following reactions, indicate whether the following is a synthesis, decomposition, single replacement, double replacement or combustion.

1) Na₃PO₄ + 3 KOH → 3 NaOH + K₃PO₄

2) MgCl₂ + Ll₂CO₃ → MgCO₃ + 2 LiCl _____

3) C₆H₁₂ + 9 O₂ → 6 CO₂ + 6 H₂O _____

4) Pb + FeSO₄ → PbSO₄ + Fe

5) CaCO₃ → CaO + CO₂

6) $P_4 + 3 O_2 \rightarrow 2 P_2 O_3$

7) 2 RbNO₃ + BeF₂ → Be(NO₃)₂ + 2 RbF _____

8) 2 AgNO₃ + Cu → Cu(NO₃)₂ + 2 Ag

9) C₃H₆O + 4 O₂ → 3 CO₂ + 3 H₂O _____

10) 2 C₅H₅ + Fe → Fe(C₅H₅)₂

11) SeCl₆ + O₂ → SeO₂ + 3Cl₂

12) 2 Mgl₂ + Mn(SO₃)₂ -> 2 MgSO₃ + Mnl₄

13) O₃ → O' + O₂

14) 2 NO₂ → 2 O₂ + N₂

LASSIFY the following reactions

1) 4 Fe(s) + 3
$$O_2(g) \rightarrow 2 Fe_2O_3(s)$$

2) NaOH(aq) +
$$HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$$

3)
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

4)
$$MgO(s) + 2 HCl(aq) \rightarrow MgCl_2(aq) + H_2O(l)$$

5)
$$CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s)$$

6)
$$S(s) + 3 F_2(g) \rightarrow SF_6(g)$$

7)
$$ZnS(s) + 2 O_2(g) \rightarrow ZnSO_4(s)$$

8)
$$SO_2(g) + Cl_2(g) \rightarrow SO_2Cl_2(g)$$

9)
$$(CuSO_4 \cdot 5H_2O)(s) \rightarrow CuSO_4(s) + 5H_2O(g)$$

(10)
$$C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$$

11)
$$NH_4NO_2(s) \rightarrow N_2(g) + 2 H_2O(g)$$

(12)
$$(NH_4)_2Cr_2O_7(s) \rightarrow N_2(g) + Cr_2O_3(s) + 4 H_2O(g)$$

(13) 2 Al(s) + Fe₂O₃(s)
$$\rightarrow$$
 2 Fe(s) + Al₂O₃(s)

(14) 2 NaI(aq) + Br₂(aq)
$$\rightarrow$$
 2 NaBr(aq) + I₂(aq)

$$(15) 2C_6H_6 + 15O_2 \rightarrow 12CO_2 + 6H_2O$$

16)
$$2 \text{ Na(s)} + \text{Cl}_2(g) \rightarrow 2 \text{ NaCl(s)}$$

17)
$$SO_3(g) + CaO(s) \rightarrow CaSO_4(s)$$

18)
$$SO_2(g) + H_2O(1) \rightarrow H_2SO_3(aq)$$

(19)
$$NH_4HCO_3(s) \rightarrow NH_3(g) + CO_2(g) + H_2O(g)$$

(20) NH₄NO₂(s)
$$\rightarrow$$
 N₂(g) + 2 H₂O(g)

(21)
$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

$$(22) C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$$

- 13) $N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$
- !4) $2 \text{ AgNO}_3(aq) + \text{Cu(s)} \rightarrow \text{Cu(NO}_3)_2(aq) + 2 \text{ Ag(s)}$
- !5) $CaCO_3(s) + 2 HCl(aq) \rightarrow CaCl_2(aq) + H_2CO_3(aq)$
- 26) $HCl(aq) + KOH(aq) \rightarrow KCl(aq) + H₂O(1)$
- !7) $AgNO_3(aq) + KCl(aq) \rightarrow AgCl(s) + KNO_3(aq)$
- (8) 2 NO(g) + O₂(g) \rightarrow 2 NO₂(g)
- 9) $Zn(s) + 2 AgNO_3(aq) \rightarrow Zn(NO_3)_2(aq) + Ag(s)$
- i0) $H_2SO_4(aq) + Ba(OH)_2 \rightarrow BaSO_4(s) + 2 H_2O(l)$
- 1) $XeF_6(s) + RbF(s) \rightarrow RbXeF_7(s)$
- 2) 2 Cs(s) + $I_2(g) \rightarrow 2$ CsI(s)
- 3) $Na_2CO_3(s) + SiO_2(s) \rightarrow Na_2SiO_3(l) + CO_2(g)$
- 4) $2 \text{ Mg(NO}_3)_2(s) \rightarrow 2 \text{ Mg(NO}_2)_2(s) + O_2(g)$
- 5) 3 HNO₂(aq) \rightarrow 2 NO(g) + HNO₃(aq) + H₂O(l)
- 6) BaCO₃(s) \rightarrow BaO(s) + CO₂(g)