PROJECTILE MOTION

UNIT 1- SECTION 1 PHYSICS 3204

• there are 4 cases to consider

- 1. Projectile that is launched horizontally and lands BELOW the point of projection.
- 2. Projectile that is launched AT AN ANGLE and lands ABOVE the point of projection
- 3. Projectile is launched AT AN ANGLE and lands AT the the same level as the point of projection.
- 4. Projectile is launched AT AN ANGLE and lands BELOW the point of projection
- Remember that negative indicates downward and positive is upward.

 \bullet Remember to separate the velocity into its components ($V_{x_i} \, V_Y)$ by using trigonometry

• Use a table to write the givens:

	х	у
V ₁		
V_2		
g	0	-9.80 m/s ²
Δt		
Δd		

• remember the following kinematic equations

$$v_f = v_i + at$$
 $a = \Delta v$ $d = v_i t + \frac{1}{2}at^2$ $d = v_2 t - \frac{1}{2}at^2$

2ad =
$$v_f^2 - v_i^2$$
 $v = \Delta d \over \Delta t$ $g = -9.80 \text{ m/s}^2$ $d = \frac{1}{2}(v_1 + v_2) t$

- Range is the distance traveled in x direction $D_x = V_x t$
- V_x is constant through the motion
- Time is the only variable that connects the x and the y.

• The quadratic formula may help you to calculate time:
$$-b \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

1