## **ELECTRIC FIELDS (ELECTROSTATICS)**

UNIT 2- SECTION 1 PHYSICS 3204

• An electric field is a region in space that affects charge, and causes the electric force on a test charge placed inside the electric field. Electric field are graphically represented by lines of force



- 2 methods to charge an object 1) conduction 2) Induction
- The materials towards the top of the "Electrostatic Series" have a poor attraction for electrons.
- Understand the charge on an electroscope (and instrument used to detect the presence of a net charge on an object).
- The charge on an electron or proton is  $e = 1,602 \times 10^{19} \text{ C}.$
- Know how charge is distributed on objects,



This picture suggests that electrical discharge is more likely to occur from places of high curvature (i.e., pointy places).

• Determining Charge



• Common Electric Field Configurations



The electric field in the vicinity of two negative charges



• Look over the Laws for Electric Field Lines

• Below are a list of formulae that can be used in electrostatics:

| <b>Coulomb's Law</b><br>( The electrical force between two objects)                                        | $F_{\varepsilon} = \frac{kQ_1Q_2}{d^2}  (\text{ unit: N})$                                                          |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| positive = repulsive force<br>negative = attractive force                                                  | $k = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{c}^2$ ( Coulomb's constant)                                   |
| Electric Field Strength ( $\overline{E}$ )<br>Sign indicates direction of the field                        | $\bar{E} = \frac{F_s}{q} \text{ (unit: (N/C))}$ or $\bar{E} = \frac{kq_m}{r^2} \text{ (for the main point charge)}$ |
| <b>Electric Potential Energy (E</b> <sub>e</sub> ):<br>The work done to move a charge in an electric field | $E_{\varepsilon} = \frac{kq_m q_t}{r}$ (unit: J)                                                                    |
| Electric Potential (V)<br>The potential energy per unit charge                                             | $V = \frac{E_{\varepsilon}}{q}$ (unit: J/C or Volts)                                                                |
|                                                                                                            | or<br>$V = \frac{kq}{r}$                                                                                            |
| <b>Potential Difference (ΔV)</b><br>The change in electric potential                                       | $\Delta V = \frac{\Delta E_s}{q} $ (Unit: Volts)                                                                    |
| <b>For a Parallel Plate</b><br>Electric Field Strength                                                     | $E = \frac{v}{d} $ (Unit: N/C)                                                                                      |

