Physics 3204
 Projectile Motion

Worksheet 4: Lands ABOVE and BELOW The Point Of Projection
Student Name:

PART A: MULTIPLE CHOICE

Instructions: Shade the letter of the correct answer on the computer scorable answer sheet provided

1. An arrow is fired at $45.5 \mathrm{~m} / \mathrm{s}$ from a 5.75 m high tree branch, at an angle of 60° above the horizontal. What maximum height, above the ground, will the arrow reach?
(A) 32.1 m
(B) 73.4 m
(C) 79.1 m
(D) 84.9 m
2. Which is constant for all projectiles?
(A) horizontal displacement
(B) horizontal velocity
(C) vertical displacement
(D) vertical velocity
3. Which demonstrates projectile motion?
(A) ball rolling up a hill
(B) car driving down a street
(C) horse galloping around an oval track
(D) rock rolling off the edge of a cliff
4. What is the direction of acceleration for any projectile?
(A) up
(B) down
(C) left
(D) right
5. A stone is thrown upward from the top of a building at an angle of 30.0° to the horizontal with an initial speed of $20.0 \mathrm{~m} / \mathrm{s}$. If the stone lands on the ground 4.22 s later, how tall is the building?
(A) 14.2 m
(B) 21.5 m
(C) 45.1 m
(D) 129 m
6. A projectile is launched at a 30.0° angle above the horizontal with a speed of $20.0 \mathrm{~m} / \mathrm{s}$. What is the vertical displacement after 3.0 s ?
(A) -74 m
(B) -14 m
(C) +12 m
(D) +31 m

PART B: WRITTEN RESPONSE

1. A ball is thrown from a 75.0 m high cliff, with an initial velocity of $82.0 \mathrm{~m} / \mathrm{s}$, at an angle of 53.0° above the horizontal. Calculate the range of the ball when it hits the ground below. JUNE 2009

2. A ball is thrown with an initial velocity of $82.0 \mathrm{~m} / \mathrm{s}$ at an angle of 53.0° below the horizontal as shown. Calculate the range of the ball if it is thrown from a height of 10.0 m . AUGUST 2009

3. A ball rolls off an incline at $20.0 \mathrm{~m} / \mathrm{s}$, as shown in the diagram below. At what horizontal distance from the wall will the ball hit the ground? AUGUST 2006

4. In the diagram below a dart that is in line with the midpoint of a 0.26 m high target, is thrown toward the target with a speed of $6.0 \mathrm{~m} / \mathrm{s}$ at a 30.0° angle. Determine whether the dart will hit the target if it is 3.0 m away.

5. Ball A is rolled down a $30.0^{\circ} \mathrm{ramp}$ on a 1.0 m high table, and exits the table horizontally at $2.0 \mathrm{~m} / \mathrm{s}$. A second identical ball B , is rolled down the same ramp but exits the table with a speed of $2.0 \mathrm{~m} / \mathrm{s}$ at a 30.0° angle. Calculate which ball will travel the greatest horizontal distance from the base of the table.

6. A ball rolls off an incline at $20.0 \mathrm{~m} / \mathrm{s}$, as shown in the diagram below. At what horizontal distance from the wall will the ball hit the ground?

7. A ball rolls off an incline, as shown, at a velocity of $22 \mathrm{~m} / \mathrm{s}$. How far from B will the ball hit the floor?

8. An object is projected from the top of a building at an angle of 28°, as shown in the diagram, at a velocity of $15 \mathrm{~m} / \mathrm{s}$. If the object hits the ground 32 m from the base of the building, how high is the building?

