1. Which is the centripetal force for a car in a frictionless banked curve?
(A) horizontal component of the normal force
(B) horizontal component of the weight
(C) vertical component of the normal force
(D) vertical component of the weight
2. By which factor does the centripetal force change if a car goes around a curve at $1 / 3$ of its original speed?
(A) $1 / 3$
(B) $1 / 9$
(C) 3
(D) 9
3. A $1.0 \times 10^{3} \mathrm{~kg}$ car rounds a 50.0 m horizontal curve with a speed of $15 \mathrm{~m} / \mathrm{s}$. If it is travelling with a speed such that it just barely avoids slipping on the road, what is the force of static friction between the tires and the road?
(A) $1.1 \times 10^{2} \mathrm{~N}$
(B) $3.0 \times 10^{2} \mathrm{~N}$
(C) $4.5 \times 10^{3} \mathrm{~N}$
(D) $9.8 \times 10^{3} \mathrm{~N}$
4. At what speed can a car safely negotiate a frictionless curve of radius 115 m if the road is banked at an angle of 35.0° ?
(A) $8.97 \mathrm{~m} / \mathrm{s}$
(B) $19.9 \mathrm{~m} / \mathrm{s}$
(C) $28.1 \mathrm{~m} / \mathrm{s}$
(D) $40.1 \mathrm{~m} / \mathrm{s}$
5. What banking angle is required for a car to complete a 110.0 m radius frictionless turn at $24.5 \mathrm{~m} / \mathrm{s}$ without skidding?
(A) 29.1°
(B) 33.8°
(C) 56.2°
(D) 60.9°
6. A car travels at $21 \mathrm{~m} / \mathrm{s}$ around a banked curve. If the radius of the curve is 75 m , what is the banking angle, assuming friction is negligible?
(A) 0.54°
(B) 1.6°
(C) 31°
(D) 81°
7. A car, travelling at $25.0 \mathrm{~m} / \mathrm{s}$, successfully moves around a banked, frictionless turn angled at 7.32°. What is the radius of this banked curve?
(A) 19.9 m
(B) 37.7 m
(C) 63.8 m
(D) 496 m
8. A 1500 kg car rounds a curve on a flat road of radius 55 m at a speed of $16 \mathrm{~m} / \mathrm{s}$. Determine whether the car will make the turn on an icy road where $\mu_{\mathrm{S}}=0.20$. Show your calculations. AUGUST 2009
9. What is the maximum speed a car can travel around a curve on a flat road if the radius of the curve is $1.20 \times 10^{2} \mathrm{~m}$ and the coefficient of static friction between the tires and road is 0.25 ? AUGUST 2006
10. A car is rounding a flat, horizontal turn with radius 51 m . The coefficient of friction between the tires and the road is 0.30 . August 2007
i) Calculate the maximum speed at which the car can safely round the turn without skidding.
ii) Calculate the angle at which the road must be banked so that the car can safely round the turn when there is no friction between the tires and the road.
11. A 1500 kg car travels at $25 \mathrm{~m} / \mathrm{s}$ around a circular curve on a flat road. If the coefficient of static friction is 0.750 , calculate the minimum radius of curvature the car can make. June 2007
12. What is the maximum speed at which a 1200 kg car can round a curve on a flat road, without slipping, if the radius of the curve is 88.0 m and the coefficient of static friction is 0.50 ? JUNE 2005
13. What is the maximum speed a car can travel around a curve on a flat road if the radius of the curve is $1.40 \times 10^{2} \mathrm{~m}$ and the tires and road have a coefficient of static friction of 0.35 ? AUGUST 2004
14. A car is moving around a horizontal curve with a radius of 50.0 m . If the coefficient of static friction is 0.75 , what is the maximum speed for the car to travel safely around the curve without skidding? JUNE 2004
