Biot's Law is used to calculate the magnetic field strength at some point in space away from a straight conductor. Note the μ is the magnetic permeability of the substance the wire is suspended in, typically air $\mu_{\text {air }}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}$

$$
\mathrm{B}=\frac{\mu \mathrm{I}}{2 \pi \mathrm{r}}
$$

PART A: Multiple Choice

1. At what distance from a wire carrying 3.5 A of current will the magnetic field strength be $9.2 \times 10^{-3} \mathrm{~T}$?
(A) $7.6 \times 10^{-7} \mathrm{~m}$
(B) $1.5 \times 10^{-6} \mathrm{~m}$
(C) $7.6 \times 10^{-5} \mathrm{~m}$
(D) $1.5 \times 10^{-4} \mathrm{~m}$
2. What is the magnetic field strength at point $\mathrm{P}, 0.020 \mathrm{~m}$ away from a wire carrying a 1.5 A current?
(A) $2.7 \times 10^{-9} \mathrm{~T}$
(B) $6.0 \times 10^{-9} \mathrm{~T}$
(C) $3.0 \times 10^{-5} \mathrm{~T}$
(D) $1.5 \times 10^{-5} \mathrm{~T}$

3. What is the current in a straight conductor if it produces a magnetic field of $1.5 \times 10^{-5} \mathrm{~T}$ at 0.15 m from the conductor?
(A) $\quad 0.028 \mathrm{~A}$
(B) $\quad 0.089 \mathrm{~A}$
(C) 11 A
(D) 35 A
4. What is the magnetic field strength in air, 0.15 m from a straight conductor, carrying an 11 A current?
(A) $2.7 \times 10^{-9} \mathrm{~T}$
(B) $5.5 \times 10^{-7} \mathrm{~T}$
(C) $1.5 \times 10^{-5} \mathrm{~T}$
(D) $1.2 \times 10^{1} \mathrm{~T}$
5. At what distance from a power line carrying $1.0 \times 10^{2} \mathrm{~A}$ will the magnetic field be $1.3 \times 10^{-4} \mathrm{~T}$?
(A) 0.15 m
(B) 0.31 m
(C) 0.39 m
(D) 0.94 m

PART B: Written Response

1. The magnetic field surrounding the current-carrying wire shown below has magnitude $2.9 \times 10^{-5} \mathrm{~T}$, and is directed into the page at point P . Calculate the magnitude and direction of the current in the wire. JUNE 2007

2. Calculate the magnitude and direction of the magnetic field strength at point P in the diagram provided. JUNE 2009

3. What is the magnetic field 2.5 cm away from a long straight conductor carrying 7.6 A of current?
4. What current is necessary to generate a magnetic field of $3.0 \times 10^{-6} \mathrm{~T}$ at a distance of 1.6 cm ?
5. What is the magnitude of the magnetic field midway between two wires spaced 1.6 cm apart if both wires are carrying a current of 3.5 A in opposite directions?
