Physics 3204

Unit 2: Section 2 -Current Electricity

Worksheet 8: Circuit Analysis - Part 1

1. A 6.0Ω and a 12Ω resistor are connected in series to a 36 V battery. What power is dissipated by the 6.0Ω resistor?
(A) 6.0 W
(B) 12 W
(C) 24 W
(D) 48 W
2. What value of R in the circuit below will cause the parallel combination to dissipate the same power as the 4.0Ω resistor?
(A) 0.26Ω
(B) 2.9Ω
(C) 6.0Ω
(D) 6.7Ω

3. Three identical resistors shown below each have resistance R. What is the total resistance of the arrangement as shown? JUNE 2009
(A) $\frac{2}{3} R$
(B) $\quad R$
(C) $\frac{3}{2} R$

(D) $3 R$
4. What is the voltage, V_{T}, across the source in the circuit below?
(A) 2.2 V
(B) 11.0 V
(C) $\quad 14.0 \mathrm{~V}$
(D) $\quad 20.0 \mathrm{~V}$

5. What is the total resistance between points X and Y below?
(A) 3.33Ω
(B) 6.67Ω
(C) 15.0Ω

6. The diagram below shows part of an electric circuit. What is the current through resistor R_{1} ?
(A) $\quad 1.0 \mathrm{~A}$
(B) $\quad 1.4 \mathrm{~A}$
(C) $\quad 2.0 \mathrm{~A}$
(D) $\quad 3.0 \mathrm{~A}$

7. What is the total resistance of the circuit below?
(A) 9.6Ω
(B) 12.0Ω
(C) 16.1Ω
(D) 50.0Ω

8. In the circuit below, the current through the 40.0Ω resistor is 90.0 mA . What is the current through the 60.0Ω resistor?
(A) 30.0 mA
(B) $\quad 45.0 \mathrm{~mA}$
(C) $\quad 60.0 \mathrm{~mA}$
(D) 90.0 Ma

9. If a copper wire was connected across points X and Y in the circuit below, what would be the current through the bulb and what would happen to the brightness of bulb?

	Current (A)	Brightness
(A)	0.64	Dimmer
(B)	0.64	Brighter
(C)	1.1	Dimmer
(D)	1.1	Brighter

10. What is the current through the 10.0Ω resistor in the circuit below?
(A) 0.11 A
(B) $\quad 0.37 \mathrm{~A}$
(C) $\quad 1.2 \mathrm{~A}$
(D) $\quad 1.7 \mathrm{~A}$

11. What is the current through the 2.0Ω resistor in the circuit below?
(A) $\quad 0.12 \mathrm{~A}$
(B) $\quad 0.50 \mathrm{~A}$
(C) $\quad 2.0 \mathrm{~A}$
(D) $\quad 5.9 \mathrm{~A}$

12. What is the power dissipated by the 2.5Ω resistor in the circuit below?
(A) 0.28 W
(B) 3.6 W
(C) 23 W
(D) 88 W

13. In the circuit shown, calculate: JUNE 2009
i) the voltage for R_{4}.
ii) the value of R_{1}.
iii) the power dissipated in R3.

14. In the circuit shown: JUNE 2009

i) calculate the total resistance.
ii) calculate the voltage across resistor 2 .
i) calculate the total resistance.
ii) calculate the voltage across resistor 2 .
15. For the circuit below calculate: AUGUST 2008

i) the value of R_{2}
ii) the power dissipated in R_{4}.
iii) the voltage across the source.
iv) Explain how the addition of another resistor in parallel will change the total resistance of the circuit.
16. For the circuit shown below, calculate:JUNE 2008

i) the resistance of R_{1}.
ii) the power dissipated in R_{4}.
iii) the voltage drop across R_{2}.
