Physics 3204

Unit 2: Section 2 -Current Electricity

Worksheet 6: SERIES CIRCUIT

1. For the circuit portion shown below the current through the 40Ω resistor is 0.4 A . What is the current through the 10Ω resistor?
(A) $\quad 0.1 \mathrm{~A}$
(B) $\quad 0.2 \mathrm{~A}$
(C) $\quad 0.3 \mathrm{~A}$
(D) $\quad 0.4 \mathrm{~A}$

2. For the circuit portion shown below the current through the 60Ω resistor is 0.6 A ; the current through the 80Ω is 0.8 A . What is the current through the 30Ω resistor?
(A) $\quad 0.3 \mathrm{~A}$
(B) $\quad 0.2 \mathrm{~A}$
(C) 1.4 A
(D) $\quad 0.6 \mathrm{~A}$

3. The circuit diagram shows 3 resistors connected in series with a battery. The ammeter reads 1.5 A . What is the voltage of the battery?
(A) 135 V
(B) 45 V
(C) 60 V
(D) 14 V

4. In the diagram below an unknown resistor is connected in series with 2 known resistors. The voltage across the unknown resistor is 4 V and the current through the unknown resistor is 0.2 A . What is the voltage of the battery?
(A) 34 V
(B) 44 V
(C) 12 V
(D) 24 V

5. Use the information in the schematic to determine the value of R_{2}.
(A) 4Ω
(B) 2.0Ω
(C) 6.0Ω
(D) 8Ω

6. In the branch to the right the total resistance is T ohms. What is value of R_{2} ?

7. If four 20Ω resistors are connected in series, what is the equivalent resistance?
(A) 5Ω
(B) 10Ω
(C) 20Ω
(D) 80Ω
8. What is the total resistance when a 12Ω and 15Ω resistor are connected in parallel?
(A) 0.037Ω
(B) 0.15Ω
(C) 6.7Ω
(D) 27Ω
9. What is the voltage drop across R_{1} in the circuit below?
(A) 4.5 V
(B) 9.0 V
(C) 11 V
(D) 15 V

10. What is the voltage drop across one of three identical resistors that are connected in series to a 6.0 V source?
(A) 2.0 V
(B) 3.0 V
(C) 6.0 V
(D) 18 V
11. What is the voltage, V , across the source for the circuit below?
(A) 1.1 V
(B) 4.0 V
(C) 6.0 V
(D) 12.0 V

12. Who proposed that around any closed path, the sum of the voltage rises is equal to the sum of the voltage drops?
(A) Coulomb
(B) Kirchoff
(C) Ohm
(D) Voltaire
13. What value of resistor, R , must be added in the circuit below to give a total resistance of 32Ω ?
(A) 2.0Ω
(B) 8.0Ω
(C) 16Ω
(D) 26Ω

14. If a $2.0 \Omega, 4.0 \Omega$, and 6.0Ω resistor are connected in series with a 24 V battery, what is the potential difference across the 2.0Ω resistor?
(A) 4.0 V
(B) 8.0 V
(C) 12 V
(D) 24 V
15. If a series circuit contains two 15Ω light bulbs, three 25Ω light bulbs, and a 24 V battery, how much current passes through each bulb?
(A) $\quad 0.15 \mathrm{~A}$
(B) $\quad 0.23 \mathrm{~A}$
(C) $\quad 0.60 \mathrm{~A}$
(D) 1.7 A
16. A string of 20 identical lights is connected in series across a 120 V source, and each light consumes 2.4 W . What is the resistance of each bulb?
(A) 6.0Ω
(B) 15Ω
(C) 48Ω
(D) 120Ω
17. For the circuit branches shown, what is the current through the 10Ω resistor?

18. An ammeter connected between the two resistors in the diagram to the right reads 0.4 A . What is the voltage of the battery?
[2]

19. According to the parameters in the circuit to the right, what is the value of R_{1} ?
[2]

20. Calculate each of the following:
(A) The equivalent resistance of three 8Ω resistors in series [1]
(B) The total resistance of a series circuit is 76Ω. If two of the resistors are 22Ω and 16Ω, what is the value of the third resistor?
