Physics 3204

Unit 2: Section 2 -Current Electricity
Worksheet 5: Electric Energy, Electrical Power and the Cost of Electrical Energy

1. Which is equivalent to 1 W ?
(A) $1 \mathrm{~V} / \mathrm{A}$
(B) $1 \cdot \mathrm{~A}$
(C) $1 \mathrm{~V} \cdot \mathrm{~A}$
(D) 1 V
2. What energy is transferred by a 6.0 V battery to run an appliance that draws 2.0 A of current in 1.0 minute?
(A) 3.0 J
(B) 12 J
(C) 180 J
(D) 720 J
3. What is the power rating of an electric kettle that draws a 12.5 A current in a 120 V circuit?
(A) 0.10 W
(B) 9.6 W
(C) 1200 W
(D) 1500 W
4. A potential difference of 12 V causes 0.35 C of electric charge to pass through a resistor in 2.6 s . How much power does the resistor dissipate?
(A) 1.6 W
(B) 4.2 W
(C) 11 W
(D) 89 W
5. If a $1.2 \times 10^{3} \mathrm{~W}$ hair dryer has a 10.0Ω resistance, how much current will it draw?
(A) $\quad 0.091 \mathrm{~A}$
(B) 11 A
(C) 12 A
(D) 120 A
6. The headlights in a car use 95 W of power and its 12 V battery has $3.4 \times 10^{5} \mathrm{C}$ of stored charge. If the lights are left on, how much time does it take for the battery to lose its charge?
(A) $2.3 \times 10^{-5} \mathrm{~s}$
(B) $3.6 \times 10^{3} \mathrm{~s}$
(C) $4.3 \times 10^{4} \mathrm{~s}$
(D) $2.7 \times 10^{6} \mathrm{~s}$
7. An electric clothes dryer uses a 30.0 A current for 12 minutes to dry a load of clothes. This process uses 5184 kJ of energy. What is the potential difference across the dryer?
(A) 12 V
(B) 14 V
(C) 120 V
(D) 240 V
8. How much electrical energy does a 75 W motor use in 15 minutes?
(A) $1.1 \times 10^{3} \mathrm{~J}$
(B) $1.9 \times 10^{3} \mathrm{~J}$
(C) $6.8 \times 10^{4} \mathrm{~J}$
(D) $2.7 \times 10^{5} \mathrm{~J}$
9. If a $1.50 \times 10^{3} \mathrm{~W}$ heater is connected to a $1.20 \times 10^{2} \mathrm{~V}$ line for 2.0 hours, how much heat energy is produced?
(A) 1.5 kJ
(B) 3.0 kJ
(C) 180 kJ
(D) 11000 kJ
10. How much current will a $1.2 \times 10^{3} \mathrm{~W}$ hair dryer draw if it has a 10.0Ω resistance?
(A) $\quad 0.090 \mathrm{~A}$
(B) 1.0 A
(C) 11 A
(D) 12 A
11. If a 2.0 kW heater operates for 10.0 hours, what is the cost of operating the heater if the rate is $\$ 0.11 / \mathrm{kWh}$?
(A) $\$ 2.20$
(B) $\$ 0.22$
(C) $\$ 1.10$
(D) $\$ 182$
12. A 1200 W stereo is operating for 6.0 hours. If charge for electricity is $7.0 \mathrm{\phi} / \mathrm{kWh}$, what is the total cost of energy consumed?
(A) $\$ 0.05$
(B) $\$ 0.50$
(C) $\$ 5.00$
(D) $\quad \$ 50.00$
13. A $1.0 \times 10^{3} \mathrm{~W}$ bulb burns for 2.0 h . What is the total cost of the electricity used if the rate is eight cents per kilowatt hour?
(A) $\$ 0.04$
(B) $\$ 0.16$
(C) $\$ 0.25$
(D) $\$ 1.60$
14. An electrical appliance runs from a 240 V power supply. A graph of power versus time for this appliance is shown below.

i) Use the graph to determine the energy dissipated by the appliance in the first 180.0 seconds.
ii) Determine the resistance of the appliance when its power consumption is 1000.0 W .
15. A power supply is connected to a heating element in the diagram below.

(i) If a total of 5.0×10^{20} electrons pass any point in the heating element circuit in 40 s , calculate the amount of power dissipated in the circuit.
16. What is the cost of operating a 20.0 A clothes dryer on a $2.20 \times 10^{2} \mathrm{~V}$ line for two hours if the price of electrical energy is $\$ 0.082 / \mathrm{kWh}$?
17. A soldering iron of resistance 576Ω is connected to a 120 V circuit. Calculate the cost to operate the soldering iron 8.0 hours a day for 21 days, if energy costs $\$ 0.080 / \mathrm{kWh}$.
