Physics 3204

Static Equilibrium Worksheet 1: Transitional Equilibrium

1. In which situation will an object be in static equilibrium?
(A) colliding
(B) falling
(C) motionless
(D) rotating
2. What is a single point at which the entire mass of a body is considered to be located?
(A) center of mass
(B) center of rotation
(C) mass point
(D) moment of force
3. What is the tension in each wire that supports the 10.0 kg sign shown?
(A) $\quad 5.00 \mathrm{~N}$
(B) $\quad 10.0 \mathrm{~N}$
(C) $\quad 49.0 \mathrm{~N}$
(D) $\quad 98.0 \mathrm{~N}$

4. Which additional force is necessary for the object shown to be in static equilibrium?
(A) $20.0 \mathrm{~N}[\mathrm{NE}]$
(B) $\quad 20.0 \mathrm{~N}[\mathrm{SW}]$
(C) $\quad 28.3 \mathrm{~N}[\mathrm{NE}]$
(D) $\quad 28.3 \mathrm{~N}[\mathrm{SW}]$

5. or which free body diagram is $\mathrm{F}_{\text {net }} \neq 0$?

6. In the diagram below, three forces are acting on an object. If the object is at rest, what is the value of the tension, T ?
(A) 1.80 N
(B) 5.21 N
(C) $\quad 9.79 \mathrm{~N}$
(D) $\quad 26.0 \mathrm{~N}$

7. A 15.0 kg sign is hung from a 3.0 m long beam of negligible mass and supported by a cable as shown. What tension is required in the cable to support the sign?
(A) $1.0 \times 10^{2} \mathrm{~N}$
(B) $1.5 \times 10^{2} \mathrm{~N}$
(C) $1.8 \times 10^{2} \mathrm{~N}$
(D) $2.1 \times 10^{2} \mathrm{~N}$

8. An object is suspended by two ropes from a ceiling and a wall as shown. What is the tension, T_{1}, in the rope connected to the ceiling?
(A) 139 N
(B) 214 N
(C) 304 N
(D) 468 N

9. A mass suspended by a rope is held stationary by a horizontal force of 44 N as shown. What is the magnitude of the tension, T , in the rope?
(A) 25 N
(B) 36 N
(C) 54 N
(D) 77 N

10. In the diagram below, the tension in cable A is $3.20 \times 10^{2} \mathrm{~N}$ and the tension in cable B is $2.40 \times 10^{2} \mathrm{~N}$. What is the mass of the traffic light?
(A) 33.3 kg
(B) 37.3 kg
(C) 42.1 kg
(D) 46.2 kg

11. A traffic light is held stationary by two wires as shown below. What is the mass of the traffic light if the tension in each wire is 235 N ?
(A) 14 kg
(B) 19 kg
(C) 29 kg
(D) 38 kg

12. If a traffic light is suspended by two wires as shown below, what is the tension in each wire?
(A) 180 N
(B) 340 N
(C) 820 N
(D) 1600 N

13. For the suspended mass shown below, what is the magnitude of the tension, T , in each cable?
(A) 123 N
(B) 162 N
(C) 187 N
(D) 373 N

14. In the diagram below, spring scales are used to measure the tension in each string supporting the 1.95 kg mass. Calculate whether the system is in static equilibrium JUNE 2008

15. A 56.0 kg person suspended by cables hangs motionless as shown. Calculate the magnitude of the tension $\mathrm{T}_{1}, \mathrm{~T}_{2}$ and T_{3} in each cable. JUNE 2007

16. Explain, using principles of physics, which design below would best hold a sign?

17. A sign of mass M hangs from two cables as shown below. Calculate the mass of the sign if it is in static equilibrium. JUNE 2009

18. What is the mass of the box supported by the two wires in the diagram below? JUNE 2005

19. The object below is suspended from a ceiling by two wires. Calculate the mass of the object from the information given in the diagram. AUGUST 2005

