1. Calculate the centripetal acceleration of a car travelling at $85 \mathrm{~km} / \mathrm{hr}$ around a circular track of radius 0.900 km .
2. What centripetal force is exerted on a 2.5 kg mass spinning in a circle of radius 1.5 m at $12.0 \mathrm{~m} / \mathrm{s}$?
3. A 5.0 kg mass is attached to a wire cable spinning in a vertical circle of radius 1.2 m . If the mass is spinning at $75 \mathrm{~km} / \mathrm{hr}$; calculate:
a) max tension
b) min tension
4. The end of a lawnmower blade rotates with a frequency of 75 Hz .
a) What is the centripetal acceleration if the blade is 32 cm long?
b) How fast is the tip of the blade moving?
5. A plane flying at $475 \mathrm{~km} / \mathrm{hr}$ flies over the top of a circular path.
a) What must be the radius of the circle to just achieve weightlessness? (Normal force $=0$)
b) What would be the normal force on a 75 kg pilot in the same plane if it fly the bottom of the circular path at the same speed?
6. A roller coaster ride makes a loop-the-loop as seen below. If the radius of the coaster is 22.0 m ,
a) How fast must the coaster be going so that the people don't fall out?
b) At the bottom of the coaster, what is the normal force on a 75 kg person if the speed is 85 $\mathrm{km} / \mathrm{hr}$?

7. A car drives around a horizontal curve with a frictional coefficient of 0.58 . What is the maximum safe speed for the car if the radius of the turn is 125 m ?
8. A 2.5 g raisin is sitting on a turntable of radius 12 cm . If the turntable rotates at a frequency of 77 RPM, what frictional force is required to keep the raison on the turntable?
9. A car is traveling at $120 \mathrm{~km} / \mathrm{hr}$ around a frictionless turn of radius 115 m . What must be the angle of the bank to keep the car on the road?
10. A frictionless turn is banked at 35° to the horizontal. What is the maximum speed at which the car can stay on this road if the radius is 225 m ?

1	$0.619 \mathrm{~m} / \mathrm{s}^{2}$		6 a	$14.7 \mathrm{~m} / \mathrm{s}$
2	240 N		6 b	2636 N
3a	1852 N		7	$26.7 \mathrm{~m} / \mathrm{s}$
3 b	1754 N		8	0.0195 n
4 a	$71061 \mathrm{~m} / \mathrm{s}^{2}$		9	45°
4 b	$151 \mathrm{~m} / \mathrm{s}$		10	$39.3 \mathrm{~m} / \mathrm{s}$
5 a	1776 m			
5 b	1470 N			

1. A lever arm 2.5 m long has a force of 175 N applied to it right angles. What is the torque generated?
2. What are the conditions for translational equilibrium?
3. What are the conditions for static equilibrium?
4. What is the tension in each of the strings below? The beam in part C is massless.
a)

b)

c)

5. What must be the tension in each string if the mass $\mathrm{M}=12 \mathrm{~kg}$?

6. Calculate the torque generated about the bolt in each wrench below.
a)

b)

7. Calculate the total torque generated about the lug nut in the problem below.

8. Kahlil $(\mathrm{m}=125 \mathrm{~kg})$ and Ghibran $(\mathrm{m}=75 \mathrm{~kg})$ are sitting on a 4.0 m long massless seesaw. If Ghibran sits on the end of the seesaw, how far from the pivot must Kahlil sit to balance him?
9. What mass must be placed on the seesaw to balance the 55 kg mass?

10. The 12.0 m long I-Beam $(\mathrm{m}=650 \mathrm{~kg})$ in the diagram is secured as a cantilever beam. A construction worker ($\mathrm{m}_{1}=75 \mathrm{~kg}$) is sitting on the beam as indicated, with his gear hanging over the side $\left(\mathrm{m}_{2}=275 \mathrm{~kg}\right)$. What is the force in each support?

11. The wheelbarrow shown is carrying a mass of 75 kg . The centre of mass is located 55 cm behind the front wheel. What must be the force exerted by the man on the handle at a distance of 1.75 m behind the front wheel?

12. A truck of mass 1200 kg is at rest on a uniform bridge of mass 1700 kg . The bridge is 75 m in length. If the truck is 15 m from support " A ", what is the force in each support?

13. The crane derrick below has a mass of 125 kg and an overall length of $5.5 \mathrm{~m} . \mathrm{M}=2500 \mathrm{~kg}$
a) What is the Tension T, in the cable?
b) What are the horizontal and vertical forces on the hinge? *this is quite insane...

14. A duck holds a hanging window in static equilibrium with a horizontal force of 125 N . If the window is 95 cm long, what is the mass of the window?

15. A 5.0 m long ladder with a mass of 22 kg is leaning against a frictionless wall at a point 4.0 m above the floor. A boy of mass 42 kg is standing 4.0 m from the bottom of the ladder.
a) What must be the force of the wall on the ladder?
b) What must be the force of friction on the ladder?
c) What must be the force of the floor on the ladder?

1	437.5 N		9	19.2 kg
2	$\mathrm{~F}_{\mathrm{NET}}=0$		10	$\mathrm{F}_{\mathrm{a}}=16170 \mathrm{~N}$ [up] $\mathrm{F}_{\mathrm{B}}=25970 \mathrm{~N}$ [down]
3	$\mathrm{F}_{\text {NEt }}=0$ $\mathrm{~T}_{\text {net }}=0$	11	231 N [up]	
4 a	29.4 N		12	$\mathrm{F}_{\mathrm{a}}=17738 \mathrm{~N}$ $\mathrm{~F}_{\mathrm{b}}=10682 \mathrm{~N}$
4 b	231 N 115 N		13 a	$\mathrm{T}^{2}=18006 \mathrm{~N}$
4 c	102 N		13 b	$\mathrm{~F}_{\mathrm{x}}=10328 \mathrm{~N}$ [right]
5	$\mathrm{T}_{1}=78.3 \mathrm{~N}$ $\mathrm{~T}_{2}=110 \mathrm{~N}$	13 c	$\mathrm{F}_{\mathrm{y}}=10975 \mathrm{~N}$ [down]	
6 a	8.25 N		14	$\mathrm{~m}^{2}=33 \mathrm{~kg}$
6 b	7.47 N		15 a	$\mathrm{F}_{\mathrm{w}}=580 \mathrm{~N}$
7	$102 \mathrm{~N} \cdot \mathrm{~m}$		15 b	$\mathrm{~F}_{\mathrm{Fr}}=580 \mathrm{~N}$
7	1.20 m		15 c	$\mathrm{F}_{\mathrm{N}}=627 \mathrm{~N}$
8				

