
PHYSICS 3204 QUANTUM PHYSICS WORKSHEET #1 PLANK'S ENERGY FORMULA

Planck also proposed that photons with very high frequencies carried more energy than ones with lower frequencies. What he actually said was "the energy of a radiation is proportional to its frequency." Albert Einstein latter confirmed this and coined a new term, the **quantum of energy**.

PART A: MULTIPLE CHOICE

Instructions: Instructions: Shade the letter of the correct answer on the computer scorable answer sheet provided

- 1. What is the energy of a photon of blue light if $\lambda = 4.5 \times 10^2$ nm?
 - $\begin{array}{ll} (A) & 9.9\times 10^{-49} \ J \\ (B) & 3.0\times 10^{-40} \ J \\ (C) & 1.5\times 10^{-25} \ J \\ (D) & 4.4\times 10^{-19} \ J \end{array}$
- 2. How much energy is carried by a photon with a 661 nm wavelength?
 - $\begin{array}{ll} (A) & 1.46 \times 10^{-48} \text{ J} \\ (B) & 4.38 \times 10^{-40} \text{ J} \\ (C) & 6.63 \times 10^{-34} \text{ J} \\ (D) & 3.01 \times 10^{-19} \text{ J} \end{array}$
- 3. What happens to the energy of a photon if its frequency is doubled?
 - (A) Increased by a factor of two
 - (B) Decreased by a factor of two
 - (C) Increased by a factor of four
 - (D) Decreased by a factor of four
- 4. How much energy does a photon of red light have if $\lambda = 650$ nm?

(A)	$2.09 \times 10^{-19} \text{ J}$
(B)	$3.06 \times 10^{-19} \text{ J}$
(C)	$3.06 \times 10^{-14} \text{ J}$

- (D) $2.09 \times 10^7 \text{ J}$
- 5. What is the energy of a single photon in a beam of light with $\lambda = 450$ nm?
 - (A) 2.0 eV
 - (B) 2.5 eV
 - (C) 2.8 eV
 - (D) 4.2 eV

Max Planck (1858-1947)

- 6. What is represented by the ratio of the energy of a photon to its frequency?
 - (A) Photon speed
 - (B) Photon wavelength
 - (C) Planck's constant
 - (D) Speed of light
- 7. What is the wavelength of a photon having an energy of 2.12 eV?
 - (A) $5.86 \times 10^{-7} \text{ m}$ (B) $6.04 \times 10^{-7} \text{ m}$ (C) $6.42 \times 10^{-7} \text{ m}$
 - (D) $7.12 \times 10^{-7} \text{ m}$
- 8. By what factor does the energy of a photon change if its wavelength is halved?
 - (A) ¹/₄
 - (B) ¹/₂
 - (C) 2
 - (D) 4
- 9. Which occurs when an opaque object with a temperature above absolute zero emits photons?
 - (A) Black-body radiation
 - (B) Compton effect
 - (C) Photoelectric effect
 - (D) UV catastrophe
- 10. What is the energy of a photon having a frequency of 7.50×10^{14} Hz?
- 11. How much energy is possessed by a photon with a frequency of 1.00×10^{14} Hz?

(A)	$4.73 \times 10^{-42} \text{ J}$
(B)	$4.37 \times 10^{-24} \text{ J}$
(C)	$6.63 \times 10^{-24} \text{ J}$
(D)	$6.63 \times 10^{-20} \text{ J}$

- 12. What wavelength of light has 4.70×10^{-25} J of energy?
 - (A) 0.210 m
 - (B) 0.423 m
 - (C) 63.8 m
 - (D) 422 m
- 13. Which best describes Einstein's explanation of the photoelectric effect?
 - (A) Light energy is concentrated in distinct "packets".
 - (B) Light energy is evenly distributed over the entire wave front.
 - (C) Metallic surfaces always absorb electrons when illuminated.
 - (D) Metallic surfaces always emit electrons when illuminated.

14. How much energy is carried by a photon having frequency 1.5×10^{11} Hz?

(A)	$1.4 \times 10^{-25} \text{ J}$
(B)	$9.9 \times 10^{-23} \text{ J}$
(C)	$3.0 \times 10^{-14} \text{ J}$
(D)	$1.3 \times 10^{-3} \text{ J}$

15. What is the energy of one photon of green light with frequency 6.0×10^{14} Hz?

(A)	$3.3 \times 10^{-40} \text{ J}$
(B)	$3.3 \times 10^{-38} \text{ J}$
(C)	$4.0 imes 10^{-19} ext{ J}$
(D)	$4.0 \times 10^{-17} \text{ J}$

16. What is the energy of a single photon in a beam of x-rays with $\lambda = 2.6$ nm?

(A)	$1.7 \times 10^{-42} \text{ J}$
(B)	$1.1 \times 10^{-23} \text{ J}$
(C)	$7.6 \times 10^{-17} \text{ J}$
(D)	$4.8 \times 10^2 \text{ J}$

- 17. Which best describes the wavelength of photons with 7.95×10^{-15} J or less?
 - (A) 0.0250 nm or longer
 - (B) 0.0250 nm or shorter
 - (C) 0.0500 nm or longer
 - (D) 0.0500 nm or shorter

PART B: WRITTEN RESPONSE

- 1. A 1.00×10^2 W light bulb emits visible light at a wavelength of 5.00×10^2 nm.
 - (i) How much energy does the emitted photons contain?
 - (ii) How much energy is emitted by the light bulb in 1.00 s?
 - (iii) How many photons are emitted in 1.00 s?
- 2. Ultraviolet radiation has a frequency of 6.8×10^{15} Hz. Calculate the energy, in joules, of the photon.

- 3. Find the energy, in joules per photon, of microwave radiation with a frequency of 7.91×10^{10} Hz.
- 4. A sodium vapor lamp emits light photons with a wavelength of 5.89×10^{-7} m. What is the energy of these photons?
- 5. One of the electron transitions in a hydrogen atom produces infrared light with a wavelength of 746.4 nm. What amount of energy causes this transition?
- 6. Find the energy in kJ for an x-ray photon with a frequency of 2.4×10^{18} s⁻¹.
- 7. A ruby laser produces red light that has a wavelength of 500 nm. Calculate its energy in electrovolts.
- 8. What is the frequency of UV light that has an energy of 2.39×10^{-18} J?
- 9. What is the wavelength and frequency of photons with an energy of 1.4×10^{-21} J?
- 10. What is the wavelength of a light that has a frequency of 3.42×10^{11} Hz?