PHYSICS 3204 QUANTUM PHYSICS

Universal Wave Equation	$\mathbf{v} = \mathbf{f} \boldsymbol{\lambda}$
	f is frequency (hz or S ⁻¹) v= speed of the wave (m/s) λ = wave length (m)
Photon of Energy	$\mathbf{E} = \mathbf{h}\mathbf{f}$
	f is frequency (hz or S ⁻¹) h is plank's constant (6.63 x10 ⁻³⁴ J s)
	Using the Universal Wave Equation
	$E = \frac{hc}{\lambda}$
	c is the speed of light $(3.0 \times 10^8 \text{ m/s})$
photoelectric effect	$\mathbf{E}_{kmax} = \mathbf{eV}_{stop}$
	E_{kmax} is the maximum kinetic energy (Joules) e is the charge of an electron (1.60 x 10 ⁻¹⁹ C)
	V_{stop} is the stopping potential (Volts)
	The electric potential energy of one electron that has been stopped is equal to its original kinetic energy
	f _o cut off frequency
	Note if the frequency of light is less that f_o than no electrons will be liberate- NO PHOTOELECTRIC EFFECT
	$E_{photon} = E_{kmax} + W_o$
	E _{photon} is energy of photon (joules)
	E_{kmax} is the maximum kinetic energy (Joules) ($E_k = \frac{1}{2}mv^2$)
	$W_{\rm o}$ = to work function. This amount of energy is required to liberate an electron
Compton Effect	$\vec{p} = \frac{h}{\lambda}$ (Momentum of a photon)
de Broglie (reverse of Compton)	$\lambda = \frac{h}{mv}$
Bohr's radius Equation	$r_n = (5.3x10^{-11})n^2$
	The radius of the electron orbit

Energy of an electron at a certain orbit level (n)	$E_n = -\frac{13.6}{n^2} \text{Ev}$
Energy of an electron when radius (r) is known	$E_e = \frac{ke^2}{2r}$
Energy lost as an electron drops from an upper to a lower level	$\Delta E = E_u - E_L$
Isotopic Notation	$\frac{A}{Z}X$
	A = Atomic Mass Number Z= # of protons
Unified Atomic Mass Units	$1 u = 1.6605 x 10^{-27} kg$
Einstein's Theory of Relativity	$E = mc^2$
	E = Energy (Joules, J) m = Mass, (Kilograms, kg) C = speed of light (3.0 x 10 ⁸ m/s)
Mass difference	Mass difference = Calculate atomic Mass- Unified atomic Mass
	The energy difference during creation of atoms
Transmutation	1) Alpha Decay
	$^{A}_{Z}X \rightarrow ^{a-4}_{a-2}Y + ^{4}_{2}He$
	2) Beta ⁻ Decay
	$_{Z}^{A}X \rightarrow _{Z=1}^{A}Y + _{-1}^{0}e$
	3)Beta Decay
	$_{Z}^{A}X \rightarrow _{Z-1}^{A}Y + _{+1}^{0}e$
	4) Simply add δ (gamma ray to the right had side
Radioactive Decay	$N = N_0 \left(\frac{1}{2}\right)^{\frac{t}{t_2}}$