PART A: MULTIPLE CHOICE

1. Which illustrates projectile motion?
(A) Driving a car around a banked curve
(B) Dropping a rock from a building
(C) Juggling
(D) Running
2. A rock is thrown horizontally from the top of a hill. If air friction were negligible, which best represents the horizontal and vertical accelerations?
(A)
(B)
(C)
(D)

Horizontal Acceleration $\left(\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)$	Vertical Acceleration $\left(\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)$
0	-9.8
0	0
9.8	-9.8
9.8	0

3. What is the range of a ball thrown horizontally at $12 \mathrm{~m} / \mathrm{s}$ if its time of flight is 3.0 s ?
(A) 0.25 m
(B) 4.0 m
(C) 12 m
(D) 36 m
4. Which represents the vertical component of the velocity at points X, Y and Z for the object following the parabolic path shown below?

(A)
(B)
(C)
(D)

\mathbf{x}	\mathbf{y}	\mathbf{z}
downward	downward	downward
downward	zero	0
upward	upward	upward
upward	zero	downward

5. An arrow is shot horizontally with a velocity of $12 \mathrm{~m} / \mathrm{s}$. If the range is 24 m , how long is the arrow in the air?
(A) $\quad 0.50 \mathrm{~s}$
(B) 2.0 s
(C) 12 s
(D) 24 s
6. A person runs horizontally off the end of a cliff and lands in the water 1.3 s later. How high is the cliff?
(A) 1.6 m
(B) 6.4 m
(C) 8.3 m
(D) 13 m
7. A marble is launched horizontally from a table at $12 \mathrm{~m} / \mathrm{s}$ and lands on the floor 0.25 s later. What is the range of the marble?
(A) 0.021 m
(B) 0.31 m
(C) 3.0 m
(D) 48 m
8. A marble is launched horizontally from the top of a building. How far has the marble fallen when the vertical component of its velocity is $16 \mathrm{~m} / \mathrm{s}$ [down]?
(A) 0.82 m
(B) 1.6 m
(C) 13 m
(D) 26 m
9. A stone is thrown horizontally from the edge of a cliff and lands in the water below. If the stone is in the air for 2.8 s , how high is the cliff?
(A) 14 m
(B) 27 m
(C) 38 m
(D) 77 m
10. A swimmer runs horizontally off the end of a wharf at $1.2 \mathrm{~m} / \mathrm{s}$ and lands in the water 2.4 s later. How far does she have to swim to get back to the wharf?
(A) 0.50 m
(B) 2.0 m
(C) 2.9 m
(D) 5.8 m
11. What is the direction of acceleration for any projectile?
(A) Up
(B) Down
(C) Left
(D) Right
12. Which diagram best represents the vertical and horizontal velocity components shortly after a ball is kicked from a cliff?

13. A rock is thrown horizontally off the roof of a building at $18 \mathrm{~m} / \mathrm{s}$. What is the horizontal component of the velocity just before the rock hits the ground?
(A) $\quad-18 \mathrm{~m} / \mathrm{s}$
(B) $\quad-9.8 \mathrm{~m} / \mathrm{s}$
(C) $\quad 9.8 \mathrm{~m} / \mathrm{s}$
(D) $18 \mathrm{~m} / \mathrm{s}$
14. A ball is thrown horizontally with a speed of $10.0 \mathrm{~m} / \mathrm{s}$. If it hits the ground 4.0 s later, what is the magnitude of the y-component of its velocity just before it hits the ground?
(A) $0 \mathrm{~m} / \mathrm{s}$
(B) $39 \mathrm{~m} / \mathrm{s}$
(C) $49 \mathrm{~m} / \mathrm{s}$
(D) $98 \mathrm{~m} / \mathrm{s}$
15. If a coin is pushed horizontally from a 1.2 m high table and lands 0.68 m from the base, what was the speed at which it left the table?
(A) $1.4 \mathrm{~m} / \mathrm{s}$
(B) $1.9 \mathrm{~m} / \mathrm{s}$
(C) $2.8 \mathrm{~m} / \mathrm{s}$
(D) $5.7 \mathrm{~m} / \mathrm{s}$
16. A projectile is shot horizontally at $40.0 \mathrm{~m} / \mathrm{s}$ from a cannon located on a cliff 155 m high. How many seconds is the projectile in the air?
(A) 0.258 s
(B) $\quad 5.62 \mathrm{~s}$
(C) $\quad 11.0 \mathrm{~s}$
(D) 31.6 s
17. If a steel ball was launched horizontally from a height of 90.0 cm and lands 1.3 m from the base, what was the initial velocity?
(A) $0.30 \mathrm{~m} / \mathrm{s}$
(B) $2.7 \mathrm{~m} / \mathrm{s}$
(C) $\quad 3.0 \mathrm{~m} / \mathrm{s}$
(D) $7.1 \mathrm{~m} / \mathrm{s}$
18. A ball is thrown horizontally at $10.0 \mathrm{~m} / \mathrm{s}$. If it hits the ground 2.00 s later, what is the magnitude of the x -component of its velocity just before it hits the ground?
(A) $0 \mathrm{~m} / \mathrm{s}$
(B) $10.0 \mathrm{~m} / \mathrm{s}$
(C) $20.0 \mathrm{~m} / \mathrm{s}$
(D) $30.0 \mathrm{~m} / \mathrm{s}$
19. An object is projected horizontally from a 0.95 m high table at a velocity of $12 \mathrm{~m} / \mathrm{s}$. How far from the base of the table will the object hit the floor?
(A) 2.3 m
(B) 5.3 m
(C) 11 m
(D) 27 m
20. A stone is thrown horizontally from the edge of a cliff and lands in the water below. If the stone is in the air for 2.8 s , how high is the cliff?
(A) 14 m
(B) 27 m
(C) 38 m
(D) 77 m
21. A swimmer runs horizontally off the end of a wharf at $1.2 \mathrm{~m} / \mathrm{s}$ and lands in the water 2.4 s later. How far does she have to swim to get back to the wharf?
(A) 0.50 m
(B) 2.0 m
(C) 2.9 m
(D) 5.8 m
22. A plane flying horizontally with a speed of $50.0 \mathrm{~m} / \mathrm{s}$ at a height of 161 m , drops a package when it is directly over a tent. How far from the tent will the package land?
(A) 161 m
(B) 169 m
(C) 287 m
(D) 1640 m

PART B: WRITTEN RESPONSE

1. In a laboratory activity, students launch a toy car horizontally off a table with a speed of $3.6 \mathrm{~m} / \mathrm{s}$ as shown. If a 0.25 m wide target is placed 1.0 m from the base of the table, determine whether the car will hit the target. AUGUST 2007

2. As a plane flies horizontally at $65.0 \mathrm{~m} / \mathrm{s}$, it releases a package from a height of $1.20 \times 10^{3} \mathrm{~m}$. JUNE 2005
(i) What is the horizontal distance the package travels after it is released?
(ii) What is the final velocity of the package?
3. If a rock is thrown horizontally from a 45.0 m high cliff with a velocity of $20.0 \mathrm{~m} / \mathrm{s}$, how far from the base of the cliff does the rock hit the ground? JUNE 2004
4. An object is thrown horizontally at a velocity of $10.0 \mathrm{~m} / \mathrm{s}$ from the top of a 90.0 m building. Calculate the distance from the base of the building that the object will hit the ground.
5. An object is thrown horizontally at a velocity of $18.0 \mathrm{~m} / \mathrm{s}$ from the top of a cliff. If the object hit the ground 100.0 m from the base of the cliff, how high is the cliff?
6. An object is thrown horizontally from the top of a building at a velocity of $15.0 \mathrm{~m} / \mathrm{s}$. If the object takes 5.50 s to reach the ground, how high is the building?
7. An object is thrown horizontally from the top of a cliff at a velocity of $20.0 \mathrm{~m} / \mathrm{s}$. If the object takes 4.20 s to reach the ground, how far from the base of the cliff did the object hit the ground?
8. An object is thrown horizontally from the top of a 85.0 m building. If the object hits the ground 67.8 m from the base of the building, what was the horizontal velocity of the object?
9. A parcel is dropped from a plane flying overhead with a constant horizontal speed of $75 \mathrm{~m} / \mathrm{s}$. If the range is $1.2 \times 10^{3} \mathrm{~m}$, from what height was the parcel dropped? Assume air resistance is negligible. Show workings. JUNE 2006
