1. A 10.0 kg box is accelerating down a frictionless incline as shown. What are the magnitudes of the parallel and perpendicular components of the gravitational force acting on the box?

	$\mathbf{F}_{\text {Parrallel }} \mathbf{(N)}$	$\mathbf{F}_{\text {perpendicular }} \mathbf{(N)}$
(A)	49.0	84.9
(B)	49.0	98.0
(C)	84.9	49.0
(D)	98.0	49.0

2. What is the normal force acting on the 7.50 kg box shown?
(A) 3.17 N
(B) $\quad 6.80 \mathrm{~N}$
(C) $\quad 31.1 \mathrm{~N}$
(D) $\quad 66.6 \mathrm{~N}$

3. The diagram below represents a cart moving on a ramp. Assuming no friction, what is the magnitude of the net force acting on the cart?
(A) $\quad 25.7 \mathrm{~N}$
(B) $\quad 30.6 \mathrm{~N}$
(C) $\quad 32.1 \mathrm{~N}$
(D) $\quad 38.3 \mathrm{~N}$

4. A box is held at rest on a frictionless incline as shown below. What is the tension, T, in the rope?
(A) 29 N
(B) 32 N
(C) 62 N
(D) 69 N

5. A 16.0 kg box is held stationary on a frictionless incline as shown. What is the tension in the string?
(A) 22.2 N
(B) 89.9 N
(C) 128 N
(D) 157 N

6. What is the force of friction acting on the 8.0 kg cart shown if it is moving at a constant speed down the incline?
(A) 47 N
(B) 59 N
(C) 63 N
(D) 78 N

7. What force of friction acts on the object shown, if it slides down the incline at a constant velocity?
(A) 17 N
(B) 21 N
(C) 24 N
(D) 29 N

8. If the 5.0 kg box shown below is at rest on the incline, what is the net force acting on it?
(A) 0 N
(B) 5.0 N
(C) 21 N
(D) 49 N

9. A 1.5 kg block slides down an incline at a constant speed as shown. What is the net force acting on this block?
(A) 0 N
(B) 6.2 N
(C) 13 N
(D) 15 N

10. What is the coefficient of kinetic friction for the incline shown if the 12 kg block is accelerating down the incline at $1.15 \mathrm{~m} / \mathrm{s}^{2}$?
(A) 0.30
(B) 0.42
(C) 0.70
(D) 0.87

11. If the box shown below slides down the frictionless incline with an acceleration of 4.90 $\mathrm{m} / \mathrm{s}^{2}$, what is the angle of the incline?
(A) 15.0°
(B) 30.0°
(C) 45.0°
(D) 60.0°

12. A block of mass M slides down an incline having a coefficient of kinetic friction, μ_{k} What is the acceleration of the block?

(A) $\mathrm{Mgsin} \theta$
(B) $g \sin \theta-\mu_{k} g$
(C) $\mathrm{g}\left(\sin \theta-\mu_{\mathrm{k}} \cos \theta\right)$
(D) $\mathrm{g}\left(\cos \theta-\mu_{\mathrm{k}} \sin \theta\right)$
13. A block is launched up a frictionless incline with an initial speed of $5.5 \mathrm{~m} / \mathrm{s}$ as shown. What is the maximum displacement, d , of the block up the incline?
(A) 0.44 m
(B) 1.5 m
(C) 2.0 m
(D) 2.4 m

14. A 75 kg skier accelerates at $1.25 \mathrm{~m} / \mathrm{s}^{2}$ from rest while descending a uniform 16° slope. What is the magnitude of the frictional force between the skis and the slope surface?
(A) 94 N
(B) 110 N
(C) 610 N
(D) 640 N
15. A 10.0 kg box is at rest on an inclined plane as shown in the diagram below. What is the force of friction acting on the box?
(A) $\quad 6.43 \mathrm{~N}$
(B) 7.66 N
(C) $\quad 63.0 \mathrm{~N}$
(D) 75.1 N

16. In the diagram below, what causes acceleration down the incline? (Ignore friction)
(A) $\mathrm{M} \cos \theta$
(B) $\mathrm{Mg} \cos \theta$
(C) $\mathrm{Mg} \sin \theta$
(D) $M \sin \theta$

17. A block slides down an inclined plane at a constant velocity of $6.0 \mathrm{~m} / \mathrm{s}$. What is the coefficient of kinetic friction if the inclined plane makes a 25° angle with the horizontal?
(A) 0.37
(B) 0.42
(C) 0.47
(D) 0.91

1. A 2.0 kg block is held at rest on a frictionless incline angled at 60.0° by the horizontal force, F, shown below. Calculate the magnitude of F. JUNE 2009

2. A skier starts from rest and begins descending a 30.0° slope. The coefficient of kinetic friction is 0.10 . AUGUST 2006
(i) What is the acceleration of the skier? Include a free body diagram.
(ii) How far down the slope will the skier travel in 10.0 s?
3. A 12.0 kg object is on an incline making a 27° angle to the horizontal. The coefficient of kinetic friction, μ_{k}, is 0.200 . AUGUST 2005
(i) What is the magnitude of the net force on the object?
(ii) If the object starts from rest, what is its velocity after 1.2 s ?
