Physics 3204

Unit1- Section 2: Newton's Laws

Worksheet 3: Newton's Laws on an Incline

1. A 10.0 kg box is accelerating down a frictionless incline as shown. What are the magnitudes of the parallel and perpendicular components of the gravitational force acting on the box?

	F _{Parrallel} (N)	F perpendicular (N)
(A)	49.0	84.9
(B)	49.0	98.0
(C)	84.9	49.0
(D)	98.0	49.0

2. What is the normal force acting on the 7.50 kg box shown?

- (A) 3.17 N
- (B) 6.80 N
- (C) 31.1 N
- (D) 66.6 N

3. The diagram below represents a cart moving on a ramp. Assuming no friction, what is the magnitude of the net force acting on the cart?

- (A) 25.7 N
- (B) 30.6 N
- (C) 32.1 N
- (D) 38.3 N

4. A box is held at rest on a frictionless incline as shown below. What is the tension, T, in the rope?

- (A) 29 N
- (B) 32 N
- (C) 62 N
- (D) 69 N

5. A 16.0 kg box is held stationary on a frictionless incline as shown. What is the tension in the string?

- (B) 89.9 N
- (C) 128 N
- (D) 157 N

- 6. What is the force of friction acting on the 8.0 kg cart shown if it is moving at a constant speed down the incline?
 - (A) 47 N
 - (B) 59 N
 - (C) 63 N
 - (D) 78 N

- 7. What force of friction acts on the object shown, if it slides down the incline at a constant velocity?
 - (A) 17 N
 - (B) 21 N
 - (C) 24 N
 - (D) 29 N

- 8. If the 5.0 kg box shown below is at rest on the incline, what is the net force acting on it?
 - (A) 0 N
 - (B) 5.0 N
 - (C) 21 N
 - (D) 49 N

- 9. A 1.5 kg block slides down an incline at a constant speed as shown. What is the net force acting on this block?
 - $(A) \qquad 0 N$
 - (B) 6.2 N
 - (C) 13 N
 - (D) 15 N

- 10. What is the coefficient of kinetic friction for the incline shown if the 12 kg block is accelerating down the incline at 1.15 m/s^2 ?
 - (A) 0.30
 - (B) 0.42
 - (C) 0.70
 - (D) 0.87

- 11. If the box shown below slides down the frictionless incline with an acceleration of 4.90 m/s 2 , what is the angle of the incline?
 - (A) 15.0°
 - (B) 30.0°
 - (C) 45.0°
 - (D) 60.0°

12. A block of mass M slides down an incline having a coefficient of kinetic friction, μ_k What is the acceleration of the block?

- (A) Mgsinθ
- (B) $gsin\theta \mu_k g$
- (C) $g(\sin\theta \mu_k \cos\theta)$
- (D) $g(\cos\theta \mu_k \sin\theta)$
- 13. A block is launched up a frictionless incline with an initial speed of 5.5 m/s as shown. What is the maximum displacement, d, of the block up the incline?
 - (A) 0.44 m
 - (B) 1.5 m
 - (C) 2.0 m
 - (D) 2.4 m

- 14. A 75 kg skier accelerates at 1.25 m/s² from rest while descending a uniform 16° slope. What is the magnitude of the frictional force between the skis and the slope surface?
 - (A) 94 N
 - (B) 110 N
 - (C) 610 N
 - (D) 640 N
- 15. A 10.0 kg box is at rest on an inclined plane as shown in the diagram below. What is the force of friction acting on the box?
 - (A) 6.43 N
 - (B) 7.66 N
 - (C) 63.0 N
 - (D) 75.1 N

- 16. In the diagram below, what causes acceleration down the incline? (Ignore friction)
 - (A) $M \cos \theta$
 - (B) Mg $\cos\theta$
 - (C) $Mg \sin\theta$
 - (D) $M \sin\theta$

- 17. A block slides down an inclined plane at a constant velocity of 6.0 m/s. What is the coefficient of kinetic friction if the inclined plane makes a 25° angle with the horizontal?
 - (A) 0.37
 - (B) 0.42
 - (C) 0.47
 - (D) 0.91

1. A 2.0 kg block is held at rest on a frictionless incline angled at 60.0° by the horizontal force, F, shown below. Calculate the magnitude of F. **JUNE 2009**

- 2. A skier starts from rest and begins descending a 30.0° slope. The coefficient of kinetic friction is 0.10. **AUGUST 2006**
 - (i) What is the acceleration of the skier? Include a free body diagram.
 - (ii) How far down the slope will the skier travel in 10.0 s?
- 3. A 12.0 kg object is on an incline making a 27° angle to the horizontal. The coefficient of kinetic friction, μ_k , is 0.200. **AUGUST 2005**
 - (i) What is the magnitude of the net force on the object?
 - (ii) If the object starts from rest, what is its velocity after 1.2 s?