Physics 3204 Unit1- Section 2: Newton's Laws Worksheet 1: Review of Physics 2204



1. A box is pushed up a frictionless inclined plane as shown below. Which free body diagram represents this situation?



- 2. The free body diagram below represents an object sliding down a frictionless surface. Which vector represents the force of gravity?
  - (A) A
     (B) B
     (C) C
  - (D) D

- B C D
- 3. The free body diagram below represents an object sliding down a rough incline. Which vector represents the normal force?
  - (A) F<sub>1</sub>
  - (B) F<sub>2</sub>
  - (C)  $F_3$
  - (D) F<sub>4</sub>



4. Which free body diagram represents a box sliding down an inclined plane with friction?



5. In the diagram below, a box is sliding down a frictionless inclined plane.



direction of motion

Which free body diagram best represents this situation?



6. The diagram below shows an object sliding down a frictionless inclined plane at a constant acceleration. Which free body diagram best represents this object?



## 7. Which represents the coefficient of kinetic friction for the diagram below?



8. What is the frictional force for a 24 kg object on a horizontal surface if  $\mu_k = 0.25$ ?

- (A) 6.0 N
  (B) 24 N
- (C) 59 N
- (D) 96 N
- 9. What is the force of friction on a 10.0 kg object sliding at a constant speed along a horizontal surface if  $\mu_k = 0.250$ ?
  - (A) 2.50 N
  - (B) 24.5 N
  - (C) 97.8 N
  - (D) 392 N

- 10. What is the magnitude of the acceleration for the object below if  $F_f = 1.0 \text{ N}$ ?
  - (A)  $0.80 \text{ m/s}^2$ (B)  $1.3 \text{ m/s}^2$ (C)  $1.5 \text{ m/s}^2$ (D)  $1.8 \text{ m/s}^2$ 4.0 kg  $F_A = 6.0 \text{ N}$
- 11. What is the magnitude of the acceleration for the object shown below?



- (A)  $2.5 \text{ m/s}^2$
- (B)  $3.0 \text{ m/s}^2$
- (C) 9.8 m/s<sup>2</sup>
- (D)  $12 \text{ m/s}^2$
- 12. A box is pulled on a smooth horizontal floor with a  $1.00 \times 10^2$  N force, at 37.0° above the horizontal. If the mass of the box is 40.0 kg, what is the normal force?
  - (A) 292 N(B) 312 N
  - (B) 312 N
  - (C) 332 N
  - (D) 393 N
- 13. In the diagram below, what is the normal force acting on the box?
  - (A) 36 N
    (B) 56 N
    (C) 69 N
    (D) 81 N



14. What is the magnitude of the net horizontal force acting on the object below?



| (A) | 44 N                |
|-----|---------------------|
| (B) | 82 N                |
| (C) | $1.1 \times 10^{2}$ |
| (D) | $1.3 \times 10^{2}$ |

N N

- 15. What is the net horizontal force acting on the object below?
  - (A) 3.07 N
    (B) 8.88 N
    (C) 10.0 N
  - (D) 12.0 N



- 16. A 15.0 kg box is resting on a horizontal surface with an applied force, F, as shown. What is the magnitude of the normal force acting on the box?
  - (A) 11 N
  - (B) 15 N
  - (C) 143 N
  - (D) 147 N



- 17. What normal force acts on the object shown, when it is pulled to the right on a frictionless surface by a force of 211 N at an angle of 25.0° to the horizontal?
  - (A) 201 N
  - (B) 303 N
  - (C) 392 N
  - (D) 481 N



- 18. If a force of 45 N is applied at a 35<sup>o</sup> angle above the horizontal to pull a 21 kg crate forward, what is the normal force on the crate?
  - (A) 170 N(B) 180 N
  - (C) 210 N
  - (D) 230 N



19. What is the normal force in the diagram below?



- 20. What is the magnitude of the acceleration of the object below if the force of friction is 7.0 N?
  - (A)  $0.57 \text{ m/s}^2$
  - (B)  $2.0 \text{ m/s}^2$
  - (C)  $2.3 \text{ m/s}^2$
  - (D)  $2.7 \text{ m/s}^2$



22. A 23.5 kg lawn mower is pushed with a force of 225 N as shown ( $\mu k = 0.510$ ). AUGUST 2009



i) Draw a free body diagram for the lawn mower.

- ii) Calculate the magnitude of the acceleration of the lawn mower.
- 23. In the diagram below, a 24.0 kg box is pushed at a 25.0° angle with an applied force of 50.0 N. The coefficient of kinetic friction is 0.100. **JUNE 2005**



(i) Draw a free body diagram for the box. Clearly label ALL forces.(ii) What is the acceleration of the box?

- 24. A 5.0 kg block is laid flat on an horizontal table ( $\mu_{K} = 0.10$ ). The block is pulled to the right with a force of 25 N, at 15° above the horizontal.
  - (i) Sketch the free body diagram.
  - (ii) What is the magnitude of the acceleration of the block?