1. A box is pushed up a frictionless inclined plane as shown below. Which free body diagram represents this situation?

(A)

(B)
(D)
(C)

2. The free body diagram below represents an object sliding down a frictionless surface. Which vector represents the force of gravity?

(A)	A
(B)	B
(C)	C
(D)	D

3. The free body diagram below represents an object sliding down a rough incline. Which vector represents the normal force?
(A) F_{1}
(B) F_{2}
(C) F_{3}
(D) F_{4}

4. Which free body diagram represents a box sliding down an inclined plane with friction?
(A)
(B)

(C)

(D)

5. In the diagram below, a box is sliding down a frictionless inclined plane.

Which free body diagram best represents this situation?
(A)

(B)

(C)

(D)

6. The diagram below shows an object sliding down a frictionless inclined plane at a constant acceleration. Which free body diagram best represents this object?

(A)
(B)

(C)
(D)

7. Which represents the coefficient of kinetic friction for the diagram below?
(A) $\frac{F}{F_{g}}$
(B) $\frac{F_{f r}}{F}$
(C) $\frac{F_{N}}{F_{g}}$

(D) $\frac{F_{f r}}{F_{N}}$
8. What is the frictional force for a 24 kg object on a horizontal surface if $\mu_{\mathrm{k}}=0.25$?
(A) $\quad 6.0 \mathrm{~N}$
(B) 24 N
(C) 59 N
(D) 96 N
9. What is the force of friction on a 10.0 kg object sliding at a constant speed along a horizontal surface if $\mu_{\mathrm{k}}=0.250$?
(A) $\quad 2.50 \mathrm{~N}$
(B) 24.5 N
(C) 97.8 N
(D) 392 N
10. What is the magnitude of the acceleration for the object below if $\mathrm{F}_{\mathrm{f}}=1.0 \mathrm{~N}$?
(A) $0.80 \mathrm{~m} / \mathrm{s}^{2}$
(B) $1.3 \mathrm{~m} / \mathrm{s}^{2}$
(C) $1.5 \mathrm{~m} / \mathrm{s}^{2}$
(D) $1.8 \mathrm{~m} / \mathrm{s}^{2}$

11. What is the magnitude of the acceleration for the object shown below?

(A) $2.5 \mathrm{~m} / \mathrm{s}^{2}$
(B) $3.0 \mathrm{~m} / \mathrm{s}^{2}$
(C) $\quad 9.8 \mathrm{~m} / \mathrm{s}^{2}$
(D) $12 \mathrm{~m} / \mathrm{s}^{2}$
12. A box is pulled on a smooth horizontal floor with a $1.00 \times 10^{2} \mathrm{~N}$ force, at 37.0° above the horizontal. If the mass of the box is 40.0 kg , what is the normal force?
(A) 292 N
(B) 312 N
(C) $\quad 332 \mathrm{~N}$
(D) 393 N
13. In the diagram below, what is the normal force acting on the box?
(A) 36 N
(B) 56 N
(C) 69 N
(D) 81 N

14. What is the magnitude of the net horizontal force acting on the object below?

(A) 44 N
(B) 82 N
(C) $1.1 \times 10^{2} \mathrm{~N}$
(D) $1.3 \times 10^{2} \mathrm{~N}$
15. What is the net horizontal force acting on the object below?
(A) 3.07 N
(B) 8.88 N
(C) $\quad 10.0 \mathrm{~N}$
(D) $\quad 12.0 \mathrm{~N}$

16. A 15.0 kg box is resting on a horizontal surface with an applied force, F , as shown. What is the magnitude of the normal force acting on the box?
(A) 11 N
(B) 15 N
(C) 143 N
(D) 147 N

17. What normal force acts on the object shown, when it is pulled to the right on a frictionless surface by a force of 211 N at an angle of 25.0° to the horizontal?
(A) 201 N
(B) 303 N
(C) 392 N
(D) 481 N

18. If a force of 45 N is applied at a 35° angle above the horizontal to pull a 21 kg crate forward, what is the normal force on the crate?
(A) 170 N
(B) 180 N
(C) 210 N
(D) 230 N

19. What is the normal force in the diagram below?

20. What is the magnitude of the acceleration of the object below if the force of friction is 7.0 N ?
(A) $0.57 \mathrm{~m} / \mathrm{s}^{2}$
(B) $2.0 \mathrm{~m} / \mathrm{s}^{2}$
(C) $2.3 \mathrm{~m} / \mathrm{s}^{2}$
(D) $\quad 2.7 \mathrm{~m} / \mathrm{s}^{2}$

22. A 23.5 kg lawn mower is pushed with a force of 225 N as shown $(\mu \mathrm{k}=0.510)$. AUGUST 2009

i) Draw a free body diagram for the lawn mower.
ii) Calculate the magnitude of the acceleration of the lawn mower.
23. In the diagram below, a 24.0 kg box is pushed at a 25.0° angle with an applied force of 50.0 N . The coefficient of kinetic friction is 0.100 . JUNE 2005

(i) Draw a free body diagram for the box. Clearly label ALL forces.
(ii) What is the acceleration of the box?
24. A 5.0 kg block is laid flat on an horizontal table $\left(\mu_{\mathrm{K}}=0.10\right)$. The block is pulled to the right with a force of 25 N , at 15° above the horizontal.
(i) Sketch the free body diagram.
(ii) What is the magnitude of the acceleration of the block?

