1. Calculate the normal force in each of the situations below.
a) A 25.0 kg block in a stationary elevator.
b) A 25.0 kg block in an elevator accelerating up at $1.2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.
c) A 25.0 kg block in an elevator accelerating down at $1.2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.
2. Calculate the normal force in each diagram.
a)

b)

c)

3. For each of the diagrams in \#2, calculate the frictional force if $\mu_{\mathrm{k}}=0.27$
4. A rock slides from rest down a 13.5 m long ramp into a pool of water. If the ramp is inclined at an angle of 55° above the horizontal and the coefficient of kinetic friction between the rock and the ramp is 0.35 , how long does it take the rock to hit the water?
5. A box is pushed up a ramp with an initial velocity of $22.0 \mathrm{~m} / \mathrm{s}$. If the ramp is inclined at an angle of 35° above the horizontal and the coefficient of kinetic friction between the box and the ramp is 0.15 , how far up the ramp will the box travel before stopping?
6. For each of the following diagrams calculate:
a) acceleration of the system
b) tension in the rope.

iv)

ii)

iii)

angled side is frictionless flat top $\mu_{\mathrm{k}}=0.20$

Answers:

1 a	245 N		3 c	10.9 N
1 b	275 N	4	$\mathrm{t}=2.04 \mathrm{~s}$	
1 c	215 N		5	$\mathrm{~d}=35.4 \mathrm{~m}$
2 a	349 N		6 (i)	$\mathrm{a}=5.35 \mathrm{~m} \cdot \mathrm{~s}^{2}, \mathrm{~T}=13.4 \mathrm{~N}$
2 b	16.5 N		6 (ii)	$\mathrm{a}=2.19 \mathrm{~m} \cdot \mathrm{~s}^{2}, \mathrm{~T}=91.3 \mathrm{~N}$
2 c	40.3 N		6 (iii)	$\mathrm{a}=5.03 \mathrm{~m} \cdot \mathrm{~s}^{2}, \mathrm{~T}=11.9 \mathrm{~N}$
3 a	94.2 N		6 (iv)	$\mathrm{a}=1.64 \mathrm{~m} \cdot \mathrm{~s}^{2}, \mathrm{~T}=28.8 \mathrm{~N}$
3 b	4.46 N			

