- 1. Calculate the normal force in each of the situations below.
 - a) A 25.0 kg block in a stationary elevator.
 - b) A 25.0 kg block in an elevator accelerating up at 1.2 m/s/s.
 - c) A 25.0 kg block in an elevator accelerating down at 1.2 m/s/s.
- 2. Calculate the normal force in each diagram.

- 3. For each of the diagrams in #2, calculate the frictional force if $\mu_k = 0.27$
- 4. A rock slides from rest down a 13.5 m long ramp into a pool of water. If the ramp is inclined at an angle of 55° above the horizontal and the coefficient of kinetic friction between the rock and the ramp is 0.35, how long does it take the rock to hit the water?
- 5. A box is pushed up a ramp with an initial velocity of 22.0 m/s. If the ramp is inclined at an angle of 35° above the horizontal and the coefficient of kinetic friction between the box and the ramp is 0.15, how far up the ramp will the box travel before stopping?
- 6. For each of the following diagrams calculate:

ii)

- a) acceleration of the system
- b) tension in the rope.

a)

angled side is frictionless flat top $\mu_k = 0.20$

Answers:

1a	245 N	3c	10.9 N
1b	275 N	4	t = 2.04 s
1c	215 N	5	d = 35.4 m
2a	349 N	6 (i)	$a = 5.35 \text{ m.s}^2, T = 13.4 \text{ N}$
2b	16.5 N	6 (ii)	$a = 2.19 \text{ m.s}^2$, T = 91.3 N
2c	40.3 N	6 (iii)	$a = 5.03 \text{ m.s}^2$, $T = 11.9 \text{ N}$
3a	94.2 N	6 (iv)	$a = 1.64 \text{ m.s}^2, T = 28.8 \text{ N}$
3b	4.46 N		