Physics 2204 Unit 2: Dynamics Worksheet 8: Problem Solving With Newton's Laws

Student Name:

Problem-Solving Strategy: Applying Newton's Laws of Motion

- Identify the physical principles involved by listing the givens and the quantities to be calculated.
- Sketch the situation, using arrows to represent all forces.
- Determine the system of interest. The result is a free-body diagram that is essential to solving the problem.
- Apply Newton's second law to solve the problem. If necessary, apply appropriate kinematic equations from the chapter on motion along a straight line.
- Check the solution to see whether it is reasonable.

Example 1:

Two dynamics carts are resting side by side , as shown, on a level frictionaless surface. A force of 4.6 N is applied to the larger of the two. Use this information to find the force B exerts on cart A.

Example 2:

A 250.0 kg Skidoo is hauling a tandem load of firewood as shown in the diagram. Sled A and its firewood has a mass of 350.0 kg while sled B and its firewood has a mass of 180.0 kg. The skidoo pulls with a force of 2.90×10^3 N [R]. Ignore any friction.

- (A) What will be the acceleration of sled A?
- (B) With what force does sled B pull back on sled A?
- (C) Consider sled B in isolation. How would the answer to part B change if sled B experiences a frictional force of 5.0×10^2 N [L].

Example 3:

A train consists of a locomotive with a mass of 5400 kg and a passenger car with a mass of 2500 kg. A force of 3200 N is accelerating the entire train. Find the force exerted on the passenger car by the locomotive. (assume there is no friction

Example 4:

Two boxes on a frictionless table are connected by a rope. A force of 48.0 N is applied as shown

	T		48.0 N
12.0 kg		10.0 kg	

A) Calculate the magnitude of the acceleration of the blocks.

B) Calculate the magnitude of the tension, T, in the connecting rope

Example 5:

A dynamics cart is connected to a 0.20 kg hanging mass by a massless string over a frictionless pulley. The force of friction between the cart and the table is 0.36 N.

- A) Calculate the magnitude of the acceleration of the system when the 0.20 kg mass is released
- B) Calculate the tension in the string when the 0.20 kg mass is released.

Example 6:

The total mass of a skydiver and her gear is 65 kg. What air friction is she experiencing when her free fall acceleration is reduced from 9.8 to 7.2 m/s^2

Example 7:

A 25 kg block (m_1) and a 35 kg block (m_2) are connected by a rope over a frictionless pulley as shown.

A) Calculate the magnitude of the acceleration of the system of blocks?

B) Calculate the magnitude of the tension in the connecting rope.

Example 8:

A model rocket with a mass of 0.600 kg accelerates from rest to 140.0 m/s in 4.5 s. Calculate the average force that the rocket applies to the exhaust gasses that are pushed out the nozzle at the rear of the rocket.

Example 9:

A pickup truck has a mass of 2100 kg. Its engine applies an accelerating force of 3800 N. If the truck is attached to a 750 kg trailer, how much force will the trailer apply to the pickup? (assume there is no friction).

PART A: MULTIPLE CHOICE

Instructions: Shade the letter of the correct answer on the computer scorable answer sheet provided.

- 1. Two masses are connected by a string over a frictionless pulley as shown. What is the acceleration of the system of masses?
 - (A) 4.9 m/s^2
 - (B) 6.5 m/s^2
 - (C) 7.4 m/s^2
 - (D) 9.8 m/s²

- 2. A hanging mass, m, is attached to a stationary mass of 10.0 kg on a horizontal table. If the coefficient of static friction between the table and the stationary mass is 0.150, what is the maximum hanging mass that will keep the system at rest?
 - (A) 1.02 kg(B) 1.50 kg
 - (C) 10.0 kg
 - (D) 66.7 kg

- 3. A 0.400 kg mass is attached to a 0.200 kg block as shown. Assuming no friction, what is the magnitude of the acceleration of the 0.200 kg mass?
 - (A) 3.33 m/s^2 (B) 6.53 m/s^2
 - (C) 9.80 m/s^2
 - (D) 19.6 m/s^2

- 4. A force of 22 N is pulling two carts to the right on a frictionless surface. If both carts have the same mass, what is the tension, T, in the string connecting m_1 and m_2 ?
 - (A) 0 N (B) 11 N
 - (C) 22 N
 - (D) 44 N

m ₂	\longrightarrow F _{app}
	m ₂

- 5. A traffic light is hanging motionless on a single, vertical chain. Which statement is correct regarding tension in the chain (T) and the force of gravity on the light (F_g) ?
 - $\begin{array}{ll} (A) & T = 0 \\ (B) & T < F_g \\ (C) & T = F_g \\ (D) & T > F_g \end{array}$
- 6. An object of mass M is hung by a string from the ceiling of an elevator that is accelerating upwards at 0.98 m/s^2 . What is the tension in the string?
 - (A) Mg
 - (B) 1.1 Mg
 - (C) 0.9 Mg
 - (D) 2 Mg

PART B: WRITTEN RESPONSE

1. A disabled sailing vessel is under tow as shown. The towline is making an angle of 18° with the horizontal and is supplying a force of 2400 N. If its mass is 2000.0 kg and it is experiencing a horizontal frictional force of 900.0 N, calculate the magnitude of the acceleration of the sailing vessel.

2. A tow truck is applying a 955 N force at 35.0° above the horizontal to a 415 kg cart as shown. The frictional force between the cart and the road is 407 N.

- i) Draw a free body diagram for the cart.
- ii) Calculate the magnitude of the acceleration of the cart.
- 3. A 2.0 kg block and a 5.0 kg block are connected by a rope over a frictionless pulley as shown.
 - (i) Calculate the magnitude of the acceleration of the system of blocks.

(ii) Calculate the magnitude of the tension in the connecting rope.

- 4. A bag containing 20.0 kg of groceries is lifted vertically upwards from the floor to a table. The maximum force the bag can withstand without ripping is 250 N.
 - i) Calculate whether the bag will rip if it is lifted at a constant speed.

- ii) Calculate whether the bag will rip if it is lifted with an acceleration of 5.10 m/s^2 .
- 5. A 7.0 kg cart is being accelerated at 3.0 m/s^2 by a hanging mass in a frictionless system. Calculate the value of the hanging mass.
 - $a = 3.0 \text{ m/s}^2 \longrightarrow$ 7.0 kg $\mu = 0$ m
- 6. Two masses are connected by a massless string over a frictionless pulley. There is a frictional force of 8.5 N acting on the 5.0 kg cart.

- i) Calculate the acceleration of the system when the 4.0kg mass is released.
- ii) Calculate the tension in the string when the 4.0kg mass is released.