Physics 2204 Unit 3: Work, Power and Energy Worksheet 14: Mass -Energy Equivalence Equation

Student Name:____

One of the most famous equations is Einstein's Mass - Energy Equivalence Equation. Einstein discovered that matter could be converted to energy (and vice-versa). The equation that expresses this mass-energy equivalency is:

$$E = mc^2$$
 (c = 3.00x10⁸ m/s)

or

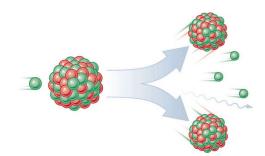
$$E = \Delta mc^2$$

In other words:

E = energy (measured in joules, J) m = mass (measured in kilograms, kg) c = the speed of light (measured in metres per second, ms-1)

A huge amount of energy from a small amount of mass. Every process that releases energy is accompanied by an equivalent loss of mass. Every process that absorbs energy results in a gain of mass. The mass changes accompanying chemical reactions are too small to measure but mass changes due to nuclear reactions can be measured using a mass spectrometer. The following process releases energy (how do you know?):

protons + neutrons \rightarrow nucleus


Thus, the mass of a nucleus is less than the sum of the masses of the protons and neutrons from which it is composed! The difference in mass is called the **mass defect (m)**:

The mass-energy equivalency formula can be used to calculate:

1) Fission

Fission = the splitting of a heavy nucleus into two nuclei with smaller mass numbers. This process is induced by absorption of a neutron by the reactant nucleus, and results in the release of energy and an additional 2 or 3 neutrons as products. For example 3 of the many possible outcomes of uranium-235 fission are:

$${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{90}_{38}Sr + {}^{143}_{54}Xe + 3{}^{1}_{0}n$$

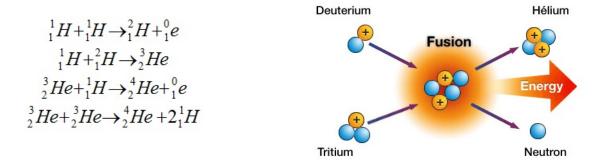
$${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{137}_{52}Te + {}^{97}_{40}Zr + 2{}^{1}_{0}n$$

$${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{142}_{56}Ba + {}^{91}_{36}Kr + 3{}^{1}_{0}n$$

Example 1:

For the reactions shown below:

Particle	Mass
neutron	1.67493 x 10 ⁻²⁷ kg
235U	3.902999 x 10 ⁻²⁵ kg
141Ba	2.3398 x 10 ⁻²⁵ kg
92Kr	1.5264 x 10 ⁻²⁵ kg


Calculate:

(A) Mass difference

(B) Energy released in the reaction

2) Fusion

Fusion the combining of two light nuclei to form a heavier, more stable nucleus. For example, the following reactions (among others) take place in the sun:

Because of the large binding energies involved in a nucleus, both fission and fusion involve energy changes of more than a million times larger than those energy changes associated with chemical reactions.

Example 2:

Calculate the energy produced in the reaction below.

Particle	Mass (Kg)
${}_{1}^{2}H$	3.3444 x 10 ⁻²⁷
${}_{1}^{3}H$	5.0082 x 10 ⁻²⁷
${}_{2}^{4}He$	6.6463 x 10 ⁻²⁷
1	1.6749 x 10 ⁻²

2	H +	$^{3}_{1}H$	\rightarrow	⁴ He	+	${}^{1}_{0}n$	+	energy	

PART A: MULTIPLE CHOICE

Instructions: Shade the letter of the correct answer on the computer scorable answer sheet provided

- 1. What scientist came up with the formula $E = mc^2$?
 - (A) Albert Einstein
 - (B) Aristotle
 - (C) Isaac Newton
 - (D) Thomas Edison
- 2. What does the famous equation $E = mc^2$ state?
 - (A) Energy and mass are equivalent
 - (B) Energy and the speed of light are equivalent
 - (C) Mass is always greater than energy
 - (D) Mass and the speed of light are equivalent
- 3. Which of the following can be true for a nuclear reaction?
 - I Mass is conserved
 - II The mass of the products is greater than the mass of the reactants
 - III The mass of the reactants is greater than the mass of the products
 - IV Mass is changed to energy
 - (A) I and II
 - (B) I and IV
 - (C) II and IV
 - (D) III and IV
- 4. If the mass of the products in a fission reaction is 3.2×10^{-28} kg less than the reactants, how much energy is released in the reaction?
 - $\begin{array}{ll} (A) & 3.6\times10^{-45} \text{ J} \\ (B) & 1.1\times10^{-38} \text{ J} \\ (C) & 9.6\times10^{-20} \text{ J} \\ (D) & 2.9\times10^{-11} \text{ J} \end{array}$
- 5. What is the mass defect of a fission reaction that releases 2.9×10^{-11} J of energy?

(A)	$3.2 \times 10^{-28} \text{ kg}$
(B)	$9.7 \times 10^{-20} \text{ kg}$
(C)	$9.7 \times 10^{20} \text{ kg}$
(D)	$3.1 \times 10^{27} \text{ kg}$

6. What is the mass difference in a nuclear reaction if the energy released is 2.98×10^{-11} J?

(A)	$3.31 \times 10^{-28} \text{ kg}$
(B)	$9.93 \times 10^{-20} \text{ kg}$
(C)	$2.78 \times 10^{-8} \text{ kg}$
(D)	$8.94 \times 10^{-3} \text{ kg}$

7. How much energy is released in a nuclear reaction if 4.37×10^{-25} kg of mass is converted to energy?

(A)	$4.86 \times 10^{-42} \text{ J}$
(B)	$1.46 \times 10^{-33} \text{ J}$
(C)	$1.31 \times 10^{-16} \text{ J}$
(D)	$3.93 \times 10^{-8} \text{ J}$

- 8. What happens when the energy from splitting an atom is released all at once?
 - (A) A small electric charge is generated
 - (B) Nuclear explosion
 - (C) The mass of the atom is lost
 - (D) The energy released can be used to power a nuclear plant
- 9. Which of the following describes what occurs in the fission process?
 - (A) A heavy nucleus is fragmented into lighter ones.
 - (B) A neutron is split into a neutron and proton.
 - (C) Two light nuclei are combined into a heavier one.
 - (D) A proton is split into three quarks.

10. The name of the following reaction ${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{141}_{56}Ba + {}^{92}_{36}Kr + 3{}^{1}_{0}n$

- (A) Fission
- (B) Fusion
- (C) α decay
- (D) γ decay
- 11. What is nuclear fusion?
 - (A) The process of an electron moving from one atom to another
 - (B) The process when two or more atoms are joined together to make a larger atom
 - (C) The process of releasing the neutrons from atoms
 - (D) The process of splitting a large atom into two smaller atoms
- 12. Where does nuclear fusion take place?
 - (A) Inside stars
 - (B) In nuclear power plants
 - (C) In submarines
 - (D) None of the Above
- 13. Which process involves making one helium atom from four hydrogen atoms?
 - (A) Fission
 - (B) Fusion
 - (C) Gamma radiation
 - (D) Radioactive dating
- 14. Which best describes nuclear fusion?
 - (A) It requires very high temperatures which are difficult to contain.
 - (B) It requires very high temperatures which are easy to contain.
 - (C) It requires very low temperatures which are difficult to contain.
 - (D) It requires very low temperatures which are easy to contain.
- 15. In the Sun, a series of nuclear reactions have the net effect of making one helium atom form four hydrogen atoms. Which process does this describe?
 - (A) Chain reaction
 - (B) Fission
 - (C) Fusion
 - (D) Nuclear reactor

16. The name of the following reaction ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$

- (A) Fission
- (B) Fusion
- (C) α decay
- (D) γ decay

PART B: WRITTEN RESPONSE

1. Radium-226 undergoes the following radioactive decay.

$^{226}_{88}$ Ra $\rightarrow ^{222}_{86}$ Rn + $^{4}_{2}$ He		
Particle	Mass (kg)	
²²⁶ ₈₈ Ra	3.752 x 10 ⁻²⁵	
²²² ₈₆ Rn	3.685 x 10 ⁻²⁵	
⁴ ₂ He	3.644 x 10 ⁻²⁷	

?

- (A) What type of reaction is this?
- (B) What is the mass difference?
- (C) How much energy is released in this reaction?

2. Use the information below to answer the following questions:

 ${}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + {}^{1}_{0}n + energy$

Particle	Mass (Kg)
${}^{2}_{1}H$	3.3444 x 10 ⁻²⁷
${}_{1}^{3}H$	5.0082 x 10 ⁻²⁷
${}_{2}^{4}He$	6.6463 x 10 ⁻²⁷
${}^{1}_{0}n$	1.6749 x 10 ⁻²⁷

- (A) What type of reaction is this?
- (B) What is the mass difference?
- (C) How much energy is released in this reaction?

3. Write the equation for á decay of radium-226 and calculate the energy released in the reaction using the following information

Particle	Mass (kg)
²²⁶ 88Ra	3.752 x 10 ⁻²⁵
²²² ₈₆ Rn	3.685 x 10 ⁻²⁵
⁴ ₂ He	6.644 x 10 ⁻²⁷

4. In a nuclear reaction, the mass of the reactants is 2.38×10^{-18} kg and the mass of the products is 2.35×10^{-18} kg. Determine the energy released from this reaction.

5. Calculate the mass defect in a nuclear process that releases $5.1 \times 10^{-13} \text{ J}.$