Physics 2204
Unit 2: Dynamics Worksheet 11: Introduction to Impulse

Student Name:

\qquad

Impulse (J) is defined as the product of the unbalanced or net force and the time that the force is acting.

The equation for impulse is:

$$
\text { Impulse }=\text { Force }(\mathrm{N}) \cdot \text { Time }(\mathrm{s})
$$

- Unit is $\mathrm{N} \cdot \mathrm{s}$
- It is a vector quantity
- The area under a force versus time graph represents impulse.

It turns out that having a net force is not enough to cause a change in the motion of an object. A net force must actually be present for some instant of time. A huge force acting for zero seconds accomplishes nothing. In fact, a small force acting for a long time can be as effective as a huge force acting for a short time.

Example 1:

If the halfback experienced a force of 800 N for 0.9 seconds to the north, determine the impulse

Example 2:

A 0.10 Kg model rocket's engine is designed to deliver an impulse of $6.0 \mathrm{~N} \cdot \mathrm{~s}$. If the rocket engine burns for 0.75 s , what is the average force does the engine produce?

Example 3:

What was the impulse experienced by the object shown in the graph below?

PART A: MULTIPLE CHOICE

Instructions: Shade the letter of the correct answer on the computer scorable answer sheet provided.

1. What are the units for Impulse ?
(A) N
(B) $\mathrm{N} \cdot \mathrm{s}$
(C) N / s
(D) s
2. Which formula is correct to calculate Impulse?
(A)

$$
\vec{J}=\vec{F} \bullet t
$$

(B)
$\vec{J}=\frac{t}{\vec{F}}$
(C) $\vec{J}=\frac{\vec{F}}{t}$
(D) $\quad t=\vec{F} \bullet \vec{J}$
3. A golf ball is struck with a force of 8.0 N for a contact time of 0.15 s . What is the impulse on the ball?
(A) $\quad 0.12 \mathrm{~N} \cdot \mathrm{~s}$
(B) $\quad 0.83 \mathrm{~N} \cdot \mathrm{~s}$
(C) $\quad 1.2 \mathrm{~N} \cdot \mathrm{~s}$
(D) $\quad 8.2 \mathrm{~N} \cdot \mathrm{~s}$
4. A dropped ball hits the ground and takes 0.15 s to come to a complete after experiencing an impulse of $112 \mathrm{~N} \bullet \mathrm{~s}$. How much force was applied to the ball over the 0.15 s time interval?
(A) $1.3 \times 10^{-3} \mathrm{~N}$
(B) $1.7 \times 10^{1} \mathrm{~N}$
(C) $1.1 \times 10^{2} \mathrm{~N}$
(D) $\quad 7.5 \times 10^{2} \mathrm{~N}$
5. An object of mass $m=2.0 n k g$ experiences a force in Newtons according to the Force vs. time graph shown here. For the time interval shown, what is the impulse?
(A) $35 \mathrm{~N} \cdot \mathrm{~s}$
(B) $70 \mathrm{~N} \cdot \mathrm{~s}$.
(C) $-35 \mathrm{~N} \cdot \mathrm{~s}$
(D) $-70 \mathrm{~N} \cdot \mathrm{~s}$

PART B: WRITTEN RESPONSE

1. What impulse is exerted in each of the following situations?
a) a force of $25 \mathrm{~N}[\mathrm{E}]$ is exerted on a cart for 3.2 s .
b) a hockey stick is in contact with a puck for 0.05 s and exerts a force of 120.0 N .
2. A volleyball player hits a ball with a force of 200 N . Find the impulse on the ball if his hand stays in contact with the football for 0.01 s .
3. A hockey player applies an average force of 80 N to a 0.25 kg hockey puck for a time of 0.2 s . Determine the impulse experienced by the hockey puck.
4. Aunt Mary needs to hang a picture in her bedroom. She uses a hammer to drive the nail into the wall. Find the force exerted by the hammer on the nail if the hammer stays in contact with the nail for 0.5 s and has an impulse of 25 Ns
5. The graphs below show the Force over Time, that was applied to an object. Calculate the impulse for each.
(a)

(b)

