Physics 2204

Unit 1: Kinematics STSE: Physics of Tailgating

Student Name:

If you can read this sign, you must have failed High School Physics

PART A: MULTIPLE CHOICE:

Instruction: Place the correct answer on the provided Scantron sheet.

- 1. Tailgating is the dangerous and usually futile practice of driving to close to someone?
 - (A) True
 - (B) False
- 2. The laws of physics and of common sense dictate that you cannot go any faster than the slowest car ahead.
 - (A) True
 - (B) False
- 3. An understanding of the physics of tailgating may be crucial in:
 - (A) Ensuring road safety
 - (B) Helping tailgaters slow down
 - (C) Help people to enjoy their ride
 - (D) All of the above are correct
- 4. Tailgating can not cause multiple car crashes even if one car in a line suddenly slows down.
 - (A) True
 - (B) False
- 5. As you observe the car ahead of you pass a fixed point, how many seconds should it take for your own car tp d pass that same point?
 - (A) 1 second
 - (B) 2 second
 - (C) 3 second
 - (D) 4 second
- 6. What does your reaction time include?
 - I Time for your brain to process the car ahead is stopping
 - II Time for your foot to move to the brake
 - III Time for you to respond to a text
 - (A) I and II
 - (B) II and III
 - (C) I and III
 - (D) I, II and III

- 7. What is the typical reaction time of an individual?
 - (A) 0.1 and 0.5 seconds
 - (B) 0.1 and 0.5 seconds.
 - (C) 0.2 and 0.5 seconds.
 - (D) 0.2 and 0.7 seconds.
- 8. Which of the following describes the motion of the car during the reaction time?
 - (A) Uniform acceleration
 - (B) Uniform deceleration
 - (C) Uniform motion
 - (D) Non zero acceleration
- 9. Which of the following formulae would be used to calculate the distance travelled during the reaction time?
 - (A) d = vt
 - $v_2 = v_2 + at$
 - (C) $v_2^2 = v_1^2 + 2ad$
 - $(D) d = v_1 t + \frac{1}{2}at^2$
- 10. A driver of a car going at 100.0 km/h suddenly sees the brake lights of a another car. If the driver has a reaction time of 0.51 s, how far will this person travel before the brakes are applied?
 - (A) 14 m
 - (B) 51 m
 - (C) 184 m
 - (D) 100 m
- 11. Which of the following describes the motion of the car during its stopping distance?
 - (A) Uniform acceleration
 - (B) Constant Speed
 - (C) Uniform motion
 - (D) Zero acceleration
- 12. Why is acceleration negative for calculating stopping distance?
 - (A) The car is assumed to be travelling right and slowing down
 - (B) The car is assumed to be travelling right and speeding up
 - (C) The car is assumed to be travelling left and slowing down
 - (D) The car is assumed to be travelling left and speeding up
- 13. Which of the following formulae would be used to calculate the stopping distance?
 - (A) d = vt
 - $v_2 = v_2 + at$
 - (C) $v_2^2 = v_1^2 + 2ad$
 - (D) $d = v_1 t + \frac{1}{2} a t^2$

	 (A) BMW M3 (B) Dodge Colt GL (C) Lincoln Continental (D) Nissan Maxima 	
PART 1.	C: WRITTEN RESPONSE In a realistic model of tailgating what factors should be considered that would increase the safe starping distance?	
	the safe stopping distance?	
		_
2.	What is the stopping distance of a Toyota Celica ($a = -9.2 \text{ m/s}^2$) from 97 km/h where the driver has a reaction time of 0.55 s?	ne
3.	A Chevrolet Blazer travelling at 97 km/h can stop in 48 m. Given that the actual stoppin distance for a certain driver is 54 m, what was the driver's reaction time?	19
4.	An automobile is travelling at 25 m/s on a country road when the driver suddenly notice a cow in the road 30 m ahead. The driver attempts to brake the automobile but the distance is too short. With what velocity would the car hit the cow if the car decelerated at 7.84 m/s^2 and the driver's reaction time was 0.75 s ?	

Which of the following vehicles would have the best braking distance?

14.