Science 2204

CORE LAB #1: AVERAGE SPEED OF UNIFORM MOTION

Question: What is the average speed of the object in uniform motion

MATERIALS:

- Ticker Tape

- Constant Velocity Car

- Adhesive Tape

- Carbon paper disc

- Roll of Tape

- 1m to 2m smooth surface

- Meter Stick

TICKER TAPE INSTRUCTIONS:

- Use about 1 m of tape, perhaps a bit less
- Assume that the timer makes 60 dots per second (60 Hz = AC electrical frequency)
- Draw a line through every 6 dots (so that there are 6 intervals between dots) this distance corresponds to 0.1 second.
- For distance, measure distance from the end of the tape to each line.

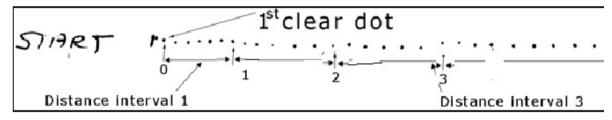


Figure 2

PROCEDURE:

- 1. Find a clean and flat surface in the classroom
- 2. Place carbon paper disc on the ticker time. Ensure that the carbon side is facing down.
- 3. Feed 1 m of ticker tape through the ticker timer.
- 4. Write "Start" on the end of the ticker tape and attached to the vehicle.
- 5. Start the ticker time and the car. Please, ensure that someone is there to catch the vehicle after the tape has run through the ticker timer.
- 6. Some of the dots at the start of the tape are crowded, select the first dot that is distinguished from all of the initial dots, mark this dot as "0".
- 7. Count off six more dots, mark this dot as "1". These numbers represent the distance traveled by the vehicle over an elapsed period of time of 0.10 seconds
- 8. Measure the distance in centimeters between dot '0" and dot "1". Record this in Table 1 as the distance for time 0.1 seconds. Measure the successive distance intervals recording the displacements in the table.
- 9. Use the data from table 1 to create a distance time graph on **page 2**. Draw a line of best fit.
- 10. Identify the independent and dependent variable for the d-t graph (Question 1on page 3)?
- 10. What does the slope of this d-t graph represent? Convert your answer to m/s (Question 2 on page 3)
- 11. How would the d-t graph change if you moved slower? (Question 3 on page 3)

- 12. Create a velocity versus time graph. Make sure that you properly label the graph on **page 4.**
- 13. Calculate the slope of v-t graph. (Question 4 on page 4)
- 14. What does the slope of the v-t graph represent? (Question 5 on page 4)
- 15. Calculate the area under the graph from 0 s to 6 s. (Question 6 on page 4)
- 16. What does the area under v-t graph represent? (Question 7 on page 4)
- 17. Answer the discussion questions
- 18. Write an AWESOME conclusion

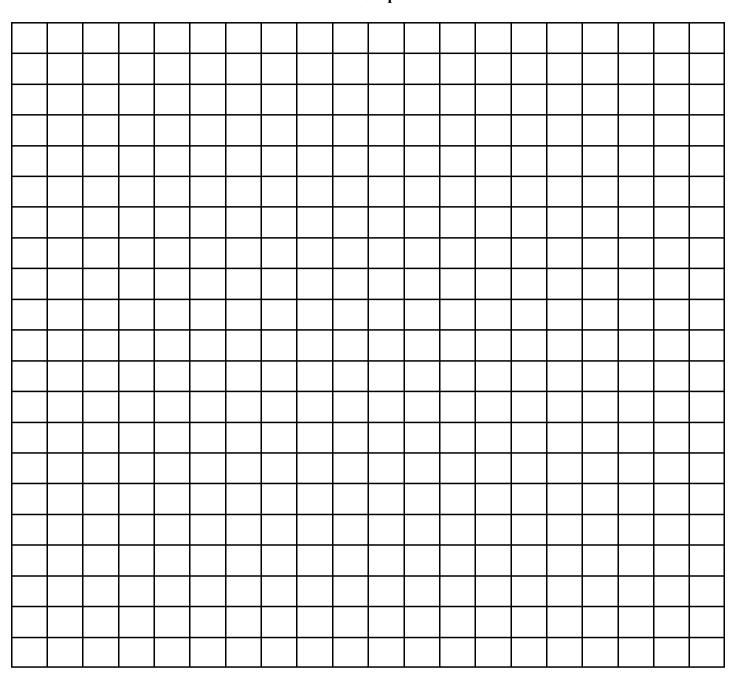
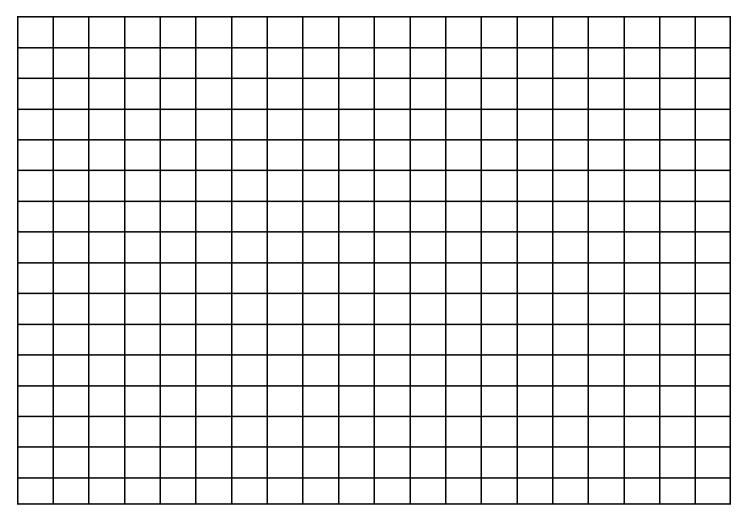

DATA/ CALCULATIONS:

Table 1: Motion of the cart

t (s)	d (cm)
0	0
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	

[1]

d-t Graph


1. Which is the independent and dependent variable? [1]

2. Calculate the slope of the best- fit straight line to determine the average speed in meters per second? [2]

3. How would the d-t graph change if you moved slower? [2]

Draw	a	v-t	graph
------	---	-----	-------

[2]

4.	Determine	the	slope	of the	v-t	graph?
т.	Determine	uic	STOPC	or the	V-ι	graph.

[1]

5. What does the slope of the v-t graph represent?

[1]

6. Calculate the area under graph from 0s to 0.6 s?

[2]

7. What does the area under v-t graph represent?

[1]

ANSWER TO DISCUSSIONS QUESTIONS:

1.	If your points did not line up in a straight line on the d-t graph, explain possible reasons for this?	[2]
2.	Did your car travel at a constant speed in this investigation? How did you know?	[2]
3.	The accepted value for the Constant Velocity Car is 40cm/s. What is the percent discrepancy? Percent of Error = \frac{\mathbb{m} \text{ easured value - actual value}}{\text{ actual value}} \cdot 100\%	[2]
CON	ICLUSION:	[10]