PHYSICS 2204
Unit 1: Kinematics
Worksheet 10: Kinematics Equations

STUDENT NAME:

In order to solve problems dealing with uniform acceleration of an object's motion there are five key equations we need to use.

	Equation	Variable Not Found In Equation
Equation 1	$\vec{v}_{2}=\vec{v}_{1}+\vec{a} t$	\vec{d}
Equation 2	$\vec{v}_{2}{ }^{2}=\vec{v}_{1}{ }^{2}+2 \vec{a} \vec{d}$	t
Equation 3	$\vec{d}=\vec{v}_{1} t+\frac{1}{2} \vec{a}^{2} t^{2}$	\vec{v}_{2}
Equation 4	$\vec{d}=\vec{v}_{2} t-\frac{1}{2} \vec{a}^{2} t^{2}$	\vec{v}_{1}
Equation 5	$\vec{d}=\left(\frac{\vec{v}_{2}+\vec{v}_{1}}{2}\right) t$	\vec{a}_{a}

The variables in the equation :

\vec{a}	$=$ Acceleration $\left(\mathrm{m} / \mathrm{s} / \mathrm{s}\right.$ or $\left.\mathrm{m} / \mathrm{s}^{2}\right)$
\vec{v}_{1}	$=$ Initial velocity $(\mathrm{m} / \mathrm{s})$
$\overrightarrow{v_{2}}$	$=$ Final velocity $(\mathrm{m} / \mathrm{s})$
\vec{d}	
Displacement (m)	

$\mathrm{t}=$ Change in time (s)

Some good problem solving steps:

1) Read the question
2) Write the givens what you know (look for units) and what you want to know
3) Sketch a diagram if needed
4) Choose a formula(s)
5) Find the answer.
6) Don't forget to use the correct units
7) Ask if the answer reasonable

Example 1:

A boat moving at $2.0 \mathrm{~m} / \mathrm{s}$ to the right accelerates to the right at $0.80 \mathrm{~m} / \mathrm{s}^{2}$ for 4.0 s .
A) Calculate the final velocity of the boat.
B) Calculate the displacement for the 4.0 s interval

Example 2:

A car is coasting at $17 \mathrm{~m} / \mathrm{s}$ (about $60 \mathrm{~km} / \mathrm{hr}$) when the driver accelerates at $5.3 \mathrm{~m} / \mathrm{s}^{2}$ for a distance of 25 m in a passing lane. What will be the speed after traveling the 25 m ?

Example 3:

A bicycle crests the top of a hill moving at $3.0 \mathrm{~m} / \mathrm{s}$. While rolling down the hill the bike experiences an acceleration of $0.50 \mathrm{~m} / \mathrm{s}^{2}$. How long is the hill if the bike is moving at $5.0 \mathrm{~m} / \mathrm{s}$ at the bottom?

Example 4:

A car travelling at $24 \mathrm{~m} / \mathrm{s}$ can slow down at a rate of $8.0 \mathrm{~m} / \mathrm{s}^{2}$. If while driving this car you notice a child in the street 41 m in front of the car, can the car stop without hitting the child. Give mathematical evidence

Example 5:

Assuming that in question 4 your reaction time is 0.25 seconds, can the car still stop without hitting the child? Give mathematical evidence.

Example 6:

A car traveling at $22 \mathrm{~m} / \mathrm{s}$ pulls into a passing lane and accelerates at $4.8 \mathrm{~m} / \mathrm{s} 2$ to pass a slow vehicle. If the lane is 610 m long, how many seconds elapse before the car must pull back into the regular lane?

PART A: MULTIPLE CHOICE

Instructions: Shade the letter of the correct answer on the computer scorable answer sheet provided

1. How far does an object travel if it starts from rest and accelerates at $2.35 \mathrm{~m} / \mathrm{s}^{2}$ for 2.20 s ?
(A) 2.59 m
(B) 5.17 m
(C) 5.69 m
(D) 11.4 m
2. How long does it take a car to accelerate from $20.0 \mathrm{~m} / \mathrm{s}$ to $60.0 \mathrm{~m} / \mathrm{s}$ at a rate of $8.5 \mathrm{~m} / \mathrm{s}^{2}$?
(A) 0.11 s
(B) $\quad 0.21 \mathrm{~s}$
(C) $\quad 4.7 \mathrm{~s}$
(D) $\quad 9.4 \mathrm{~s}$
3. An object initially moving at $2.5 \mathrm{~m} / \mathrm{s}$ accelerates at $1.5 \mathrm{~m} / \mathrm{s}^{2}$ for 3.2 s . What is its final speed?
(A) $2.3 \mathrm{~m} / \mathrm{s}$
(B) $4.8 \mathrm{~m} / \mathrm{s}$
(C) $\quad 7.3 \mathrm{~m} / \mathrm{s}$
(D) $\quad 9.5 \mathrm{~m} / \mathrm{s}$
4. What is the magnitude of the acceleration of an object that changes its velocity from 2.8 m / s to $6.4 \mathrm{~m} / \mathrm{s}$ over a distance of 15 m ?
(A) $0.12 \mathrm{~m} / \mathrm{s}^{2}$
(B) $0.24 \mathrm{~m} / \mathrm{s}^{2}$
(C) $\quad 1.1 \mathrm{~m} / \mathrm{s}^{2}$
(D) $\quad 2.2 \mathrm{~m} / \mathrm{s}^{2}$
5. A car starts from rest and accelerates uniformly at $6.6 \mathrm{~m} / \mathrm{s}^{2}$ for 10.0 s . How far does it travel?
(A) 33 m
(B) 66 m
(C) 330 m
(D) 660 m
6. The driver of a car travelling at $25 \mathrm{~m} / \mathrm{s}$ sees a moose ahead. He applies the brakes and the car slows down at a rate of $8.3 \mathrm{~m} / \mathrm{s}^{2}$. If the driver's reaction time is 0.60 s , what is the total distance travelled from the time the driver sees the moose until the car stops?
(A) 14 m
(B) 15 m
(C) 38 m
(D) 53 m
7. An object accelerates at $2.2 \mathrm{~m} / \mathrm{s}^{2}$ for 3.0 s . If the final velocity of the object is $15 \mathrm{~m} / \mathrm{s}$, what was the initial velocity?
(A) $2.3 \mathrm{~m} / \mathrm{s}$
(B) $8.4 \mathrm{~m} / \mathrm{s}$
(C) $16 \mathrm{~m} / \mathrm{s}$
(D) $22 \mathrm{~m} / \mathrm{s}$
8. An object travels with uniform motion at $20 \mathrm{~m} / \mathrm{s}$ for 10 s . What is the acceleration?
(A) $0 \mathrm{~m} / \mathrm{s}^{2}$
(B) $0.5 \mathrm{~m} / \mathrm{s}^{2}$
(C) $2 \mathrm{~m} / \mathrm{s}^{2}$
(D) $20 \mathrm{~m} / \mathrm{s}^{2}$
9. A skateboarder initially moving at $5.0 \mathrm{~m} / \mathrm{s}$ [W] slows to a stop. Which is true regarding the skateboarder's motion?

	Displacement	Acceleration
(A)	East	East
(B)	East	West
(C)	West	East
(D)	West	West

10. An airplane lands with an initial speed of $120 \mathrm{~m} / \mathrm{s}$. The acceleration of the airplane as it comes to a stop is $-11.6 \mathrm{~m} / \mathrm{s}^{2}$. How far does the airplane travel before stopping?
(A) 620 m
(B) 730 m
(C) 1200 m
(D) 1400 m
11. A cart initially moving at $4.5 \mathrm{~m} / \mathrm{s}$ [E] accelerates at $1.1 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{E}]$. What is the displacement of the cart when its velocity is $5.9 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$?
(A) $0.64 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$
(B) $6.6 \mathrm{~m} / \mathrm{s}$ [E]
(C) $8.0 \mathrm{~m} / \mathrm{s}$ [E]
(D) $25 \mathrm{~m} / \mathrm{s}$ [E]
12. A car accelerates from rest at $3.0 \mathrm{~m} / \mathrm{s}^{2}$ for 5.0 s . What is its final velocity?
(A) $0.6 \mathrm{~m} / \mathrm{s}$
(B) $1.7 \mathrm{~m} / \mathrm{s}$
(C) $15 \mathrm{~m} / \mathrm{s}$
(D) $45 \mathrm{~m} / \mathrm{s}$

PART B: LONG ANSWER

1. A snowmobile on a frozen pond is moving at $15.0 \mathrm{~m} / \mathrm{s}$ when the driver decides to pass a slow-moving sled. If the driver accelerates to a speed of $19.5 \mathrm{~m} / \mathrm{s}$ in a time of 4.00 seconds then what was the acceleration?
2. Your friend is on a quad is moving at $14.0 \mathrm{~m} / \mathrm{s}$ when you breeze by on your bike. Your friend accelerates at $2.0 \mathrm{~m} / \mathrm{s}^{2}$ for 3.0 seconds. How far does she travel during this time?
3. Corvette can accelerate during high speeds at about $2.0 \mathrm{~m} / \mathrm{s}^{2}$. At this rate how long does it take the car to accelerate from $80 \mathrm{~km} / \mathrm{h}$ to $160 \mathrm{~km} / \mathrm{h}$?
4. A snowmobile with an initial speed of $5.6 \mathrm{~m} / \mathrm{s}$ travels 24.0 m in 2.0 s . What final speed does it attain? Express your answer first in m / s and then in $\mathrm{km} / \mathrm{hr}$.
5. A motorcycle with an initial speed of $2.2 \mathrm{~m} / \mathrm{s}$ accelerates at $3.6 \mathrm{~m} / \mathrm{s}^{2}$ and covers a distance of 12.0 m . What is its final speed?
6. A hockey puck initially travelling to the right at $34 \mathrm{~m} / \mathrm{s}$ is slowed down by rough ice at a rate of $2.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. It moves for 7.2 s before finally coming to rest. How far did it travel?
7. A ski-doo moving at $12 \mathrm{~m} / \mathrm{s}$ [W] accelerates at $6.0 \mathrm{~m} / \mathrm{s}^{2}$ [W]. How long will it take to experience a displacement of 63 m [W]?
8. A car moves at $12 \mathrm{~m} / \mathrm{s}$ for 30.0 s . It then accelerates at $1.5 \mathrm{~m} / \mathrm{s}^{2}$ for 8.00 seconds. Finally, it continues on at this top speed for another 12.0 s . Calculate the net displacement during the whole time interval.
9. A police cruiser is travelling at $20.0 \mathrm{~m} / \mathrm{s}$ when the officer spies a speeder. The cruiser accelerates at $3.0 \mathrm{~m} / \mathrm{s}^{2}$ for 5.0 seconds, at which time the speeder pulls over and starts thinking up excuses to try and get out of getting a ticket. The cruiser then slows to a stop at $5.0 \mathrm{~m} / \mathrm{s}^{2}$. How far does it go in the entire time?
10. The driver of a car travelling at $25 \mathrm{~m} / \mathrm{s}$ suddenly sees the lights of a barrier 45 m ahead. It takes the driver 0.75 s to apply the brakes and the acceleration during braking is $-9.5 \mathrm{~m} / \mathrm{s}^{2}$. Calculate whether the car will hit the barrier.
11. A car starts from rest and accelerates at $6.8 \mathrm{~m} / \mathrm{s}^{2}$ for a period of 3.1 s . The brakes are then applied and the car immediately slows to a stop at a rate of $-7.6 \mathrm{~m} / \mathrm{s}^{2}$. Calculate whether the car will hit a garbage can that is located 25 m ahead of the position where the brakes were applied.
12. A car is travelling at a constant velocity of $28 \mathrm{~m} / \mathrm{s}$ when the driver sees a moose 75 m ahead. The brakes are then applied, causing the car to accelerate at $-6.4 \mathrm{~m} / \mathrm{s}^{2}$. What was the maximum reaction time the driver had to apply the brakes and avoid hitting the moose?
[^0]
[^0]: [5]

