# PHYSICS 2204 <br> Unit 2: Dynamics <br> Core Lab \#1: Newton's Second Law 

STUDENT NAME: $\qquad$

DATE: $\qquad$
GROUP MEMBERS:

PURPOSE: The purpose of this activity is to investigate the variables that affect the acceleration of an object and the manner in which those variables affect the acceleration.

## BACKGROUND:

When forces are unbalanced, objects accelerate. But what exactly affects the acceleration of the object? You will explore this question by running a collection of simulations in the absence of friction. Set the friction value to 0.00 and run the following trials. Collect sufficient velocity-time information (fifth column) for determining the acceleration in the last column.

## PROCEDURE:

You need to click on the link in the dynamics section found on Mr Fifield's Corner
DATA/ CALCULATIONS:
PART 1: Constant mass, vary applied force, measure acceleration.

| Trial | Applied <br> Force(N) | Mass <br> $(\mathbf{k g})$ | Net Force <br> (N) | Velocity-time <br> Information | Acceleration <br> $\left(\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 10.0 | 2.0 |  |  |  |
| $\mathbf{2}$ | 20.0 | 2.0 |  |  |  |
| $\mathbf{3}$ | 40.0 | 2.0 |  |  |  |
| $\mathbf{4}$ | 60.0 | 2.0 |  |  |  |
| $\mathbf{5}$ | 80.0 | 2.0 |  |  |  |
| $\mathbf{6}$ | 100.0 | 2.0 |  |  |  |

Plot a graph of the results. Even though acceleration was the dependent variable place it on the horizontal axis.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Explain whether the data are linear. If so, construct a line of best fit.
$\qquad$
$\qquad$

Find the slope of the line of best fit.

Compare the slope to the total mass. What do you notice?
$\qquad$
$\qquad$
$\qquad$

ART 2: Constant force, vary mass, measure acceleration

| Trial | Applied <br> Force(N) | Mass <br> $(\mathrm{kg})$ | Net Force <br> (N) | Velocity-time <br> Information | Acceleration <br> $\left(\mathrm{m} / \mathbf{s}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 40.0 | 1.0 |  |  |  |
| 8 | 40.0 | 3.0 |  |  |  |
| 9 | 40.0 | 4.0 |  |  |  |
| 10 | 40.0 | 5.0 |  |  |  |

Plot a graph of the results. Even though acceleration was the dependent variable place it on the horizontal axis.


Describe, in general terms the relation. Go something like this: As the mass (increases/decreases/whatever) the acceleration (increases/decreases/whatever)
$\qquad$
$\qquad$
$\qquad$

State whether or not the data suggest that acceleration is inversely proportional to the mass.
$\qquad$
$\qquad$

## DISCUSSION/ANALYSIS:

1. What affect does a doubling of the net force have upon the acceleration of the object? Be quantitative. (Don't just say it decreases or increases; indicate the factor by which acceleration decreases or increases.)
$\qquad$
$\qquad$
$\qquad$
2. Identify a set of two trials that support your answer for question 1:
3. What affect does a tripling of the net force have upon the acceleration of the object? Be quantitative.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
4. Identify a set of two trials that support your answer for question 3:
$\qquad$
$\qquad$
5. What affect does a doubling of the mass have upon the acceleration of the object?

Be quantitative.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
6. Identify a set of two trials that support your answer in question 5:
$\qquad$
7. What affect does a quadrupling of the mass have upon the acceleration of the of the object? Be quantitative.
$\qquad$
$\qquad$
$\qquad$
8. Identify a set of two trials that support your answer in question 7:
$\qquad$
$\qquad$
9. Lab partners Vera and Bill Confuzzens attempted to use Trials 5 and 8 to show the affect that a doubling of force has upon the acceleration. Explain why these two trials cannot be used to show the affect of force upon acceleration.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

CONCLUSION:
$\qquad$

