PHYSICS 3204 UNIT 2- SECTION 1:ELECTROSTATIC Worksheet 6 -Calculating Electric Field

PART A: Multiple Choice

- 1. What is the force between a 1.50×10^{-5} C charge and a 1.03×10^{-5} C charge that are separated by a distance of 12.0 m?
 - (A) 9.66×10^{-3} N

(B) $1.16 \times 10^{-1} \text{ N}$

- (C) 9.66×10^9 N
- (D) $1.16 \times 10^{11} \text{ N}$
- 2. What force is experienced by a 2.50×10^{-6} C test charge placed in a 2.92×10^{4} N/C electric field?
 - $\begin{array}{ll} (A) & 8.56 \times 10^{-11} \ \mathrm{N} \\ (B) & 7.30 \times 10^{-2} \ \mathrm{N} \\ (C) & 6.57 \times 10^8 \ \mathrm{N} \\ (D) & 1.17 \times 10^{10} \ \mathrm{N} \end{array}$
- 3. What is the electric field strength at 6.7 m from a 6.0×10^{-6} C charged object?

(A)	$1.3 \times 10^{-7} \text{ N/C}$
(B)	$9.0 \times 10^{-7} \text{ N/C}$
(C)	$1.2 \times 10^{3} \text{ N/C}$
(D)	$8.1 \times 10^{3} \text{ N/C}$

- 4. What is the electric field strength 0.50 m away from an object having a charge of 2.5×10^{-6} C?
 - (A) $5.0 \times 10^{-6} \text{ N/C}$ (B) $1.0 \times 10^{-5} \text{ N/C}$ (C) $4.5 \times 10^{4} \text{ N/C}$
 - (D) 9.0×10^4 N/C
- 5. What is the electric field strength 0.25 m away from an object having a charge of 1.5×10^{-6} C?
 - $\begin{array}{ll} (A) & 6.0 \times 10^{-6} \ \text{N/C} \\ (B) & 2.4 \times 10^{-5} \ \text{N/C} \\ (C) & 5.4 \times 10^4 \ \text{N/C} \\ (D) & 2.2 \times 10^5 \ \text{N/C} \end{array}$
- 6. What is the magnitude of the electric field at a point 0.012 m from a charge of 0.28 C?

 $\begin{array}{ll} (A) & 1.9\times 10^3 \ \text{N/C} \\ (B) & 2.1\times 10^{11} \ \text{N/C} \\ (C) & 4.9\times 10^{12} \ \text{N/C} \\ (D) & 1.8\times 10^{13} \ \text{N/C} \end{array}$

- 7. What is the magnitude of the electric field strength at a distance of 0.010 m from an object having a charge of 0.25 C?

8. If two positive point charges are placed 3.0 m apart as shown below, what is the magnitude of the electric field at point P midway between the two charges?

9. Which shows how the electric field strength varies with distance from a charged object?

10. Which best describes how electric field strength varies with distance in the region around a point charge?

(A)
$$\varepsilon \alpha r$$

(B)
$$\mathcal{E} = \frac{1}{r}$$

(C)
$$\varepsilon = r^2$$

(D)
$$\varepsilon = \frac{1}{r^2}$$

- 11. What is the charge on an object that experiences a 5.0 N force in a 50.0 N/C electric field?
 - (A) 0.10 C
 (B) 0.20 C
 (C) 2.0 C
 (D) 10.0 C
- 12. What is the electric field strength 2.4 m from an object with a charge of 7.5×10^{-7} C?
 - (A) $1.8 \times 10^{-6} \text{ N/C}$ (B) $8.5 \times 10^{-4} \text{ N/C}$ (C) $1.2 \times 10^{3} \text{ N/C}$ (D) $2.8 \times 10^{3} \text{ N/C}$
- 13. A Van de Graaf generator creates an electric field about a metal sphere. A 3.0 μ C charge, near the sphere, experiences a force of 5.4 x 10⁻⁴ N. What is the strength of the electric field at the location of the charge?
- 14. What is the magnitude of the electric field strength 2.40 m away from a 3.4 μ C point charge?
 - (A) 0.53 N/C (B) 130 N/C (C) 5.3×10^3 N/C (D) 1.3×10^4 N/C
- 15. What is the electric field strength 45 cm from a 5.0×10^{-6} C charged object?

PART B : Written Response

1. A Calculate the net electric field at point P in the diagram shown. AUGUST 2009

2. Two charged spheres, A and B, are arranged as shown. Calculate the magnitude and direction of the electric field strength at point P. AUGUST 2008

3. What is the magnitude and direction of the electric field below at point P? Show workings. **JUNE 2006**

4. Given Q_1 and Q_2 arranged as shown in the diagram below, what is the electric field strength at point P? **JUNE 2005**

5. In the diagram below, what is the magnitude and direction of the net electric field resulting from the interaction of two fields (ε_1 a ε_2), at point X? JUNE 2004

6. A negatively charged particle with a mass of 5.90×10^{-15} kg is at rest between two horizontal parallel charged plates as shown. If there is an excess of 5.0×10^2 electrons on the particle, calculate the electric field strength between the parallel plates. **JUNE 2007**

+++++++++ Particle () - - - - - - - -

7. A 2.5×10^{-5} kg particle with a charge of -1.5×10^{-6} C is placed in an electric field of strength 2.2×10^{3} N/C [right] as shown. Determine the magnitude and direction of the acceleration of the particle. **AUGUST 2007**

8. In the diagram below a proton, neutron and electron are located between two horizontal charged parallel plates. **AUGUST 2008**

i) Describe what will happen to each particle in the field.

II) Explain which particle will have the greatest acceleration.