- 1. An object is fired with an initial velocity of 23 m/s [R30°U]. What are the initial components of its velocity?
- 2. An object rolls off the top of a horizontal table.
 - a) Sketch the trajectory of this object and label the velocity vectors at three points.
 - b) Sketch the trajectory of this object and label the acceleration vector at three points.
- 3. An object is fired at an angle of 60° below the horizon. Sketch the acceleration vector for this projectile at three points in its trajectory.
- 4. A plane in horizontal flight at a velocity of 560 km/hr releases a projectile. From what altitude can the package be released in order to hit a target 1500 m ahead of the aircraft?
- 5. For each of the projectiles shown below, calculate:
 - a) time in the air
 - b) max range
 - c) velocity when it hits the ground (magnitude and direction)
 - d) max altitude for iii)

i)

ii)

iii)

1	$v_y = 11.5 \text{ m/s [up]}$ $v_x = 19.9 \text{ m/s [right]}$	
2a	notes	
2b	notes	
3	all arrows same length	
4	$d_y = 455 \text{ m}$	
5i	t = 1.75 s, d_x = 19.2 m v _f = 20.4 m/s [R57°D]	
5ii	t = 1.89s, $d_x = 12.0 \text{ m}$ $v_f = 22.4 \text{ m/s} [R74^{\circ}D]$	
5iii	$t = 9.27 \text{ s, } d_x = 168 \text{ m}$ $v_f = 73 \text{ m/s } [R76^{\circ}D]$ $d_{y_{max}} = 20.6 \text{ m}$	