Unit 3: Mixtures and Solutions
CORE LAB 2
Name: \qquad
Partners:

Problem: How does temperature affect the solubility of a solid in a liquid solvent?
Materials:

balance	graduated cylinder	thermometer
beaker	stirring rod salt	stopwatch

Hypothesis: \qquad

Procedure:

Part 1:

1. Draw the axes for a graph. Label the y -axis Solubility $(\mathrm{g} / \mathrm{L})$. Label the x -axis Temperature $\left({ }^{\circ} \mathrm{C}\right)$. Mark the scale for the x -axis to go from 0 to 100 .
2. Plot the data in the table below. Use a different colour for each solute. Include a legend to show the solute that each colour represents. Record in Observations
Temperature versus Solubility for Three Solutes

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Solubility in Water (g/L)*		
	Sugar (Sucrose)	Potassium Chlorate	Ammonium Chloride
10	1910	50	320
20	2040	70	370
30	2200	110	410
40	2390	150	460
50	2610	210	500
60	2870	270	550
70	3200	340	600

3. Connect the points for each solute by drawing a line of best fit.
4. Use dashes to extend (extrapolate) the line for each solute so that it crosses $100^{\circ} \mathrm{C}$.
5. Give your graph a title.
6. Answer Analyze questions 1, 2, and 3, and answer Conclude and Apply question 1.

Analyze

Observations:
Title:

Questions:

1. Describe the shape of the lines on your graph.
\qquad
\qquad
\qquad
\qquad
2. What happens to the lines as the temperature increases?
\qquad
\qquad
\qquad
\qquad
3. Predict the solubility of each solute at 90 degrees Celsius?

Sucrose:

Potassium Chlorate:
Ammonium Chloride: \qquad
Conclusion:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

