PHYSICS 3204
CURRENT ELECTRICITY

Electron Flow	Electrons flow out of the (-) terminal into the $(+)$
CURRENT	$\begin{aligned} & I=\frac{Q}{t} \\ & \mathrm{I}=\text { current (ampere, A) } \\ & \mathrm{Q}=\text { charge }(\text { coulombs, } \mathrm{C} \\ & \lambda=\text { time }(\mathrm{s}) \end{aligned}$
AMMETER	Instrument used to measure current. Ammeter is connected in series with the other elements of the circuit.
	$\begin{aligned} & V=\frac{E_{e}}{q} \\ & \text { V= voltage (Volts, V) } \\ & \left.\mathrm{E}_{\mathrm{e}}=\text { Electric Potential Energy (} \mathrm{J}\right) \\ & \mathrm{q}=\text { charge (Coulombs, C) } \end{aligned}$
VOLTMETER	The instrument used to measure voltage.
ELECTRIC ENERGY	$\begin{aligned} & E_{e}=\text { VIt } \\ & E_{e}=\text { Electric Potential Energy (J) } \\ & V=\text { voltage or potential difference across the circuit (Volts, V) } \\ & I=\text { current flowing through the circuit (Amperes, A) } \\ & t=\text { time that the circuit is being used (seconds) } \end{aligned}$
OHM'S LAW: measures "resistance" to electron flow.	$\begin{aligned} & R=\frac{V}{I} \\ & \mathrm{R}=\text { resistance }(\text { Ohms, } \Omega) \\ & \mathrm{V}=\text { Voltage }(\text { Volts, } \mathrm{V}) \\ & \mathrm{I}=\text { current }(\text { ampere, } \mathrm{A}) \end{aligned}$
OHMIC CIRCUIT	when V versus I results in a straight line, the resistor has a constant resistance. Such resistors are said to be ohmic because they obey Ohm's law.

FOUR FACTORS THAT AFFECT RESISTANCE:	1) increases in resistance as its temperature rises 2) longer the wire, larger the resistance 3)Resistance is inversely proportional to the cross-sectional area of the resistor $\begin{aligned} & \frac{R_{1}}{R_{2}}=\frac{L_{1}}{L_{2}} \\ & \frac{R_{1}}{R_{2}}=\frac{L_{2}}{L_{1}} \end{aligned}$ 4)Resistance is affected by the substance that makes up the resistor. (See Resistance of Conductor below)
RESISTANCE OF A CONDUCTOR	$\begin{aligned} & R=\rho \frac{L}{A} \text { or } R=\rho \frac{L}{\pi r^{2}} \\ & \mathrm{R}=\operatorname{resistance}(\mathrm{Ohms}, \Omega) \\ & \rho=\text { resistivity }(\Omega \mathrm{m}) \\ & \mathrm{L}=\text { length }(\mathrm{m}) \\ & \mathrm{A}=\operatorname{Area}\left(\mathrm{m}^{2}\right) \end{aligned}$
KIRCHOFF'S CURRENT RULE:	current going into a junction point equals the current leaving the junction point.
KIRCHOFF'S VOLTAGE RULE:	$\begin{aligned} & \text { - Series (single loop) } \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{1}+\mathrm{V}_{2} \\ & \text { - Parallel (in every loop) } \Sigma \mathrm{V}_{\text {rise }}=\Sigma \mathrm{V}_{\text {rdrop }} \end{aligned}$
TOTAL RESISTANCE IN SERIES	$\mathrm{R}_{\text {тотаL }}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\ldots$
TOTAL RESISTANCE IN PARALLEL	$\frac{1}{R_{\text {TOTAL }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \ldots$
POWER	$\begin{aligned} & P=\frac{W}{t} \text { or } P=I V \\ & \mathrm{P}=\operatorname{power}(\mathrm{W}, \text { watts }) \\ & \mathrm{W}=\text { work }(\mathrm{J}, \text { Joules }) \\ & \mathrm{t}=\text { time }(\sec) \\ & \mathrm{I}=\operatorname{current}(\text { amperes, } \mathrm{A}) \\ & \mathrm{V}=\operatorname{Voltage}(\mathrm{V}) \end{aligned}$
ENERGY	$\mathrm{E}=\mathrm{P} / \mathrm{t}$ To find the cost of your light bill be sure to leave units as kW 。hr

