PHYSICS 3204 CURRENT ELECTRICITY

Electron Flow	Electrons flow out of the (-) terminal into the (+) $v_{\tau} = R_{2}$ R_{3}
CURRENT	$I = \frac{Q}{t}$ I = current (ampere, A) Q = charge (coulombs, C $\lambda = \text{time} (s)$
AMMETER	Instrument used to measure current. Ammeter is connected in series with the other elements of the circuit.
ELECTRIC POTENTIAL ENERGY OR VOLTAGE	$V = \frac{E_e}{q}$ V= voltage (Volts, V) E _e = Electric Potential Energy (J) q = charge (Coulombs, C)
VOLTMETER	The instrument used to measure voltage.
ELECTRIC ENERGY	E _e = VIt E _e = Electric Potential Energy (J) V= voltage or potential difference across the circuit (Volts, V) I= current flowing through the circuit (Amperes, A) t = time that the circuit is being used (seconds)
OHM'S LAW : measures "resistance" to electron flow.	$R = \frac{V}{I}$ R = resistance (Ohms, Ω) V = Voltage (Volts, V) I = current (ampere, A)
OHMIC CIRCUIT	when V versus I results in a straight line, the resistor has a constant resistance. Such resistors are said to be ohmic because they obey Ohm's law. $V = \frac{1}{I}$

FOUR FACTORS THAT AFFECT	1) increases in resistance as its temperature rises
RESISTANCE:	
	2) longer the wire, larger the resistance $\frac{R_1}{R_2} = \frac{L_1}{L_2}$
	2) longer the wire, larger the resistance $\frac{R_1}{R_2} = \frac{L_1}{L_2}$ 3)Resistance is inversely proportional to the cross-sectional area of the resistor $\frac{R_1}{R_2} = \frac{L_2}{L_1}$
	 4)Resistance is affected by the substance that makes up the resistor. (See Resistance of Conductor below)
RESISTANCE OF A CONDUCTOR	$R = \rho \frac{L}{A}$ or $R = \rho \frac{L}{\pi r^2}$
	$R = \text{resistance (Ohms, }\Omega)$ $\rho = \text{resistivity }(\Omega m)$ L = length (m) $A = \text{Area (}m^2)$
KIRCHOFF'S CURRENT RULE:	current going into a junction point equals the current leaving the junction point. $I_{1} I_{2}$
	$\mathbf{I}_3 = \mathbf{I}_1 + \mathbf{I}_2$
KIRCHOFF'S VOLTAGE RULE:	- Series (single loop) $V_T = V_1 + V_2$
	- Parallel (in every loop) $\Sigma V_{rise} = \Sigma V_{rdrop}$
TOTAL RESISTANCE IN SERIES	$R_{TOTAL} = R_1 + R_2 + R_3 + \dots$
TOTAL RESISTANCE IN PARALLEL	$\frac{1}{R_{TOTAL}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \dots$
	$ \begin{array}{c} I \\ I $
POWER	$P = \frac{W}{t}$ or $P = IV$
	P = power (W, watts) W= work (J, Joules) t = time (sec) I= current (amperes, A) V = Voltage (V)
ENERGY	E = P/t